手写 LRU
题目
用 JS 实现一个 LRU 缓存
LRU 使用
Least Recently Used 最近最少使用
即淘汰掉最近最少使用的数据,只保留最近经常使用的资源。它是一个固定容量的缓存容器
。
const lruCache = new LRUCache(2); // 最大缓存长度 2
lruCache.set(1, 1); // 缓存是 {1=1}
lruCache.set(2, 2); // 缓存是 {1=1, 2=2}
lruCache.get(1); // 返回 1
lruCache.set(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lruCache.get(2); // 返回 null
lruCache.set(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lruCache.get(1); // 返回 null
lruCache.get(3); // 返回 3
lruCache.get(4); // 返回 4
分析
- 哈希表,即
{ k1: v1, k2: v2, ... }
形式。可以O(1)
事件复杂度存取key
value
- 有序。可以根据最近使用情况清理缓存
JS 内置的数据结构类型 Object
Array
Set
Map
,恰好 Map
符合这两条要求
Map 是有序的
Map 有序,Object 无序
实现
class LRUCache {
length = 0
data = new Map()
constructor(length) {
if (length < 1) throw new Error('invalid length')
this.length = length
}
set(key, value) {
const data = this.data
if (data.has(key)) {
data.delete(key)
}
data.set(key, value)
if (data.size > this.length) {
const delKay = data.keys().next().value // 最前面的元素
data.delete(delKay)
}
}
get(key) {
const data = this.data
if (!data.has(key)) return null
const value = data.get(key)
// 更新到最前面
data.delete(key)
data.set(key, value)
return value
}
}
注意,get
set
时都要把操作数据移动到 Map 最新的位置。
扩展
实际项目中可以使用第三方 lib
- https://www.npmjs.com/package/quick-lru
- https://www.npmjs.com/package/lru-cache
- https://www.npmjs.com/package/tiny-lru
- https://www.npmjs.com/package/mnemonist
连环问:不用 Map 如何实现 LRU cache ?
LRU cache 是很早就有的算法,而 Map 仅仅是这几年才加入的 ES 语法。
使用 Object 和 Array
根据上文的分析,两个条件
- 哈希表,可以用
Object
实现 - 有序,可以用
Array
实现
// 执行 lru.set('a', 1) lru.set('b', 2) lru.set('c', 3) 后的数据
const obj1 = { value: 1, key: 'a' }
const obj2 = { value: 2, key: 'b' }
const obj3 = { value: 3, key: 'c' }
const data = [obj1, obj2, obj3]
const map = { 'a': obj1, 'b': obj2, 'c': obj3 }
模拟 get
set
操作,会发现几个问题,都来自于数组
- 超出 cache 容量时,要移除最早的元素,数组
shift
效率低 - 每次
get
set
时都要把当前元素移动到最新的位置,数组splice
效率低
Array 改为双向链表
数组有问题,就需要使用新的数据结构 双向链表
Interface INode {
value: any
next?: INode
prev?: INode
}
双向链表可以快速移动元素。末尾新增元素 D 很简单,开头删除 A 元素也很简单。
要把中间的元素 B 移动到最后(如 LRU set
get
时移动数据位置),只需要修改前后的指针即可,效率很高。
实现
interface IListNode {
value: any
key: string
prev?: IListNode
next?: IListNode
}
class LRUCache {
private length: number
private data: { [key: string]: IListNode } = {}
private dataLength: number = 0
private listHead: IListNode | null = null
private listTail: IListNode | null = null
constructor(length: number) {
if (length < 1) throw new Error('invalid length')
this.length = length
}
// 移动到末尾(最新)
private moveToTail(curNode: IListNode) {
const tail = this.listTail
if (tail === curNode) return
// 1、让 preNode 和 nextNode 建立关系
const preNode = curNode.prev
const nextNode = curNode.next
if (preNode) {
if (nextNode) {
preNode.next = nextNode
} else {
delete preNode.next
}
}
if (nextNode) {
if (preNode) {
nextNode.prev = preNode
} else {
delete nextNode.prev
}
// 头指针更新
if (this.listHead === curNode) this.listHead = nextNode
}
// 2、让 curNode 断绝与 preNode 和 nextNode 的关系
delete curNode.prev
delete curNode.next
// 3、在 list 末尾建立与 curNode 的新关系
if (tail) {
// 先后再前
tail.next = curNode
curNode.prev = tail
}
this.listTail = curNode
}
private tryClean() {
while (this.dataLength > this.length) {
const head = this.listHead
if (head == null) throw new Error('head is null')
const headNext = head.next
if (headNext == null) throw new Error('headNext is null')
// 1、断绝 head 和 next 的关系
delete headNext?.prev
delete head.next
// 2、重新赋值 listHead
this.listHead = headNext
// 3、清理data, 减小长度
delete this.data[head.key]
this.dataLength--
}
}
get(key: string): any {
const data = this.data
const curNode = data[key]
if (curNode == null) return null
if (this.listTail === curNode) {
// 在末尾直接返回
return curNode.value
}
// 不在末尾则需要移动到末尾
this.moveToTail(curNode)
return curNode.value
}
set(key: string, value: any) {
const data = this.data
const curNode = data[key]
if (curNode == null) {
// 新增数据
const newNode: IListNode = { key, value }
// 移动到末尾
this.moveToTail(newNode)
data[key] = newNode
this.dataLength++
// 首个元素的处理
if (this.dataLength === 1) this.listHead = newNode
} else {
// 修改现有数据
curNode.value = value
this.moveToTail(curNode)
}
// 尝试清理长度
this.tryClean()
}
}
注意事项
- 数据结构如何定义,
data
和链表分别存储什么- 双向链表的操作(非常繁琐,写代码很容易出错,逻辑一定要清晰!!!)
- 链表
node
中要存储data.key
,否则删除data
需要遍历、效率低