用位运算来实现集合的枚举

文章介绍了如何使用位运算,结合容斥定理解决给定整数范围内能被一组质数整除的数的个数问题。通过二进制表示质数组合,利用位操作高效枚举并计算结果。
摘要由CSDN通过智能技术生成

ACwing算法笔记ing

 一.位运算的基本知识:

1.位运算符:

按位与&
按位或

|

按位异或

取反~
左移<<
右移>>

二.左移右移运算符的应用:集合中的枚举:

题目:

给定一个整数 n和 m 个不同的质数 p1,p2,…,pm。

请你求出 1∼n中能被 p1,p2,…,pm中的至少一个数整除的整数有多少个。

1.首先根据容斥定理 :我们知道了能被p1整除的数的集合“P1”,知道了能被p2整除的数的集合P2,以此类推,我们知道了可以被pm整除的数的集合Pm;

所以1∼n中能被 p1,p2,…,pm中的至少一个数整除的整数:

res= \sum_{i=1}^{m}p_i-\sum_{i,j}^{m}(p_i\bigcap p_j)+\sum_{i,j,k}^{m }(p_i\bigcap p_j \bigcap p_k) .......(公式如有错误请指正);

2.集合的个数好说:可以用\left \lfloor n/p_i \right \rfloor来算出可以整除Pi的个数,可以用\left \lfloor n \coprod_{i,j,k...}^{m} p_i\times p_j\times p_k\times ...\right \rfloor来算出来可以同时整除若干个公因子的个数;

但怎么枚举?用普通的搜索太麻烦了:

所以这里介绍一个位运算枚举所有组合的方法;

3.再观察一下res,我们发现所有的选法为:C_{m}^{1}\textrm{}+C_{m}^{2}\textrm{}+C_{m}^{3}\textrm{}+C_{m}^{4}\textrm{}+.....=2^n-1;

4.就像我们在离散数学里学的极大项和极小项一样,我们用二进制来表示每一种组合:

如有8个质数:p_1 \bigcap p_2\bigcap p_4 可以表示为0000 1011 :

5.上代码:

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

const int N=20;

int n,m;
int p[N];

int main()
{
    cin>>n>>m;
    for(int i=0;i<m;i++)cin>>p[i];
    
    int res=0;
    for(int i=1;i<1<<m;i++)
    {
        int t=1;
        int s=0;
        
        
        for(int j=0;j<m;j++){
            if(i>>j&1)
            {
                if(p[j]*(LL)t>n)
                {
                    t=-1;
                    break;
                }
                t*=p[j];
                s++;
            }
        }
        
        
        if(t!=-1){
            if(s%2)res+=n/t;
            else res-=n/t;
        }
    }
    cout<<res<<endl;
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值