随机事件与概率

目录

1. 随机事件

1.1 样本空间

1.2 随机事件的关系

1.3 德摩根律(对偶律)

1.4 复杂事件

2. 概率

2.1 古典概率

2.2 概率的运算性质

3. 条件概率

4. 事件的独立性


1. 随机事件

1.1 样本空间

S = {0, 1, 2, 3, 4, 5, 6, 7, 8}

1.2 随机事件的关系

  1. 和(并)事件:A∪B,A和B中至少有一个发生。
  2. 积(交)事件:A∩B或AB,A和B同时发生。
  3. 差事件:𝐴−𝐵,A发生且B不发生。

1.3 德摩根律(对偶律)

1.4 复杂事件

  1. A,B,C 中至少有一个发生:𝐴∪𝐵∪𝐶
  2. A,B,C 都发生:𝐴𝐵𝐶
  3. A,B,C 中恰好有两个发生:𝐴𝐵∪𝐴𝐶∪𝐵𝐶
  4. A,B,C 中至多有两个发生:
  5. A与B发生,C不发生:

2. 概率

2.1 古典概率

(1)排列:

【例】

(2)组合:

【例】

2.2 概率的运算性质

  1. 若事件A,B互斥,
  2. 对任意事件A,
  3. 对任意两个事件A, B,​​​​​​​

  1. 对任意两个事件A、B,​​​​​​​
  2. 若A,B相互独立,P(AB) = P(A)P(B)

【例】

3. 条件概率

  1. 条件概率公式:​​​​​​​​​​​​​​
  2. 乘法公式:​​​​​​​

         

  1. 全概率公式:​​​​​​​

【例】

设某人有三个不同的电子邮件账户,有70%的邮件进入账户1,另有20%的邮件进入账户2,其余10%的邮件进入账户3. 根据以往经验,三个账户垃圾邮件的比例分别为1%,2%, 5%,问某天随机收到的一封邮件为垃圾邮件的概率.

  1. 贝叶斯公式:

【例】

已知肝病患者经AFP检测呈阳性的概率为95%,而非肝病患者经AFP检测呈阳性(误诊)的概率为2%. 设人群中肝病的发病率为0.04%,现有一人经AFP检测呈阳性,求此人确实患肝病的概率.

4. 事件的独立性

  1. 若P(AB) = P(A)P(B),则事件A与事件B相互独立。
  2. 相互独立 不等于 互不相容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值