吴恩达机器Deeplearning.ai课程学习记录:多维特征(1)

想起来写博客的时候已经学了一些了,前面的内容也简单,就从正规方程开始写吧。

目录

正规方程 Normal Equation

优缺点

使用场景

特征缩放 Feature Scaling

方法

归一化

均值归一化

Z-score 标准化

缩放范围


正规方程 Normal Equation

一般我们在自己进行线性回归的时候(非线性回归也可以),通常是运用梯度下降的方式:

w_{n}=w_{n}-\alpha\cdot\frac{1}{m} \sum (f_{w,b}(x^{(i)})-y^{(i)})x_{n}^{(i)}

b=b-\alpha\cdot\frac{1}{m}\sum f_{w,b}(x^{(i)}-y^{(i)})

但是在一些高级函数库中会采取正规方程的方法,其仅仅适用于线性回归方程。

优缺点

它的好处,当然就是不用再一步步进行迭代了,但是也有缺点:

1.仅适用于线性回归

2.当数据量或维度较大时(>10,000),速度很慢

使用场景

一般情况下,我们是不需要使用正规方程的方法的,但是在使用一些函数库的时候会涉及到相关用法。

特征缩放 Feature Scaling

    当在进行多维方程的梯度回归时,经常会遇到两个特征的取值范围相差较大的情况,此时,较小的那个特征所起到的影响就会很小,从而影响回归方程的准确度:从另一个角度进行理解,由于梯度下降的公式

w_{n}=w_{n}-\alpha\cdot\frac{1}{m} \sum (f_{w,b}(x^{(i)})-y^{(i)})x_{n}^{(i)}

中学习率是一个值\alpha,因此无法兼顾相差较大的几个特征。

此时,就要进行特征缩放,从而使它们都具有可比的范围。

方法

归一化

例如,假设特征x1,x2 具有以下范围:

200<x_{1}<3000 ,   0<x_{2}<5

那么我们进行特征缩放,使得:

\frac{1}{15}<x_{1,scale}<1,    0<x_{2,scale}<1

这种方法叫做归一化

均值归一化

同样的,假设特征x1,x2具有以下范围:

200<x_{1}<3000 ,   0<x_{2}<5

我们可以分别求出x1,x2的均值,记为\mu _{1},\mu_{2}

那么,进行均值归一化:

x_1=\frac{x_1-\mu_1}{2000-300},    x_2=\frac{x_2-\mu_2}{5-0}

从而得出:

-0.18<x_{1,scale}<0.82,    -0.46<x_{2,scale}<0.54

这种方法叫做均值归一化

Z-score 标准化

方法于均值归一化差不多,只是将分母的2000-300,5-0变成了求的其标准差\sigma(原来这个读西格玛)

x_1=\frac{x_1-\mu_1}{\sigma_1},    x_1=\frac{x_1-\mu_1}{\sigma_2}

缩放范围

一般来说,缩放的目标是将特征大小限制在(-1,1)之间,但实际过程中类似(-0.3,0.3),(-3,3),(0,1)之类的范围都是可取的,也不一定需要对称。

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江安的猪猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值