字节3面真题,LeetCode上hard难度,极具启发性题解

本文介绍了一道LeetCode难题,如何在O(n)的时间复杂度和常数级空间复杂度下,找出给定未排序整数数组中缺失的最小正整数。关键策略是利用快排的思想,通过partition划分数组,找到连续正整数的断点。
摘要由CSDN通过智能技术生成

请添加图片描述

文章目录

  • 🚀前言
  • 🚀LeetCode:41. 缺失的第一个正整数
  • 🚀思路
  • 🚀整个代码思路串一下
  • 🚀Code

🚀前言

铁子们好啊!阿辉来讲道题,这道题据说是23年字节3面真题,LeetCode上面hard难度,而且是很多难题的基础模板,今天阿辉就带你拿下它!!!

🚀LeetCode:41. 缺失的第一个正整数

链接🔗:缺失的第一个正数
给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。
请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。

示例 1:
输入:nums = [1,2,0]
输出:3

示例 2:
输入:nums = [3,4,-1,1]
输出:2

示例 3:
输入:nums = [7,8,9,11,12]
输出:1

🚀思路

首先这道题要求时间复杂度在O(n),空间复杂度在O(1)
很明显可以想到二分或者有限次的遍历数组

  1. 对于本题,这道题让我们找到数组中缺失的第一个正整数,我们很容易想到排序然后便利数组,看看数组里面最先缺了谁,这道题就解决了,但是很遗憾时间复杂度限制在了O(n)空间复杂度O(1)不能用排序
  2. 不过上述的思考并非毫无意义,对于本题并非不能排序,因为我们要找的是缺失的第一个正整数,只要我们能够做到将数组中从1~x的数字排好即可,x+1即为所求,而排好这部分数我们仅需遍历一遍数组即可
  3. 铁子们是不是要问为何如此,因为1~x这些数字本身就决定了他们的位置,1本身就是他自己的索引,比如:1填在数组中0位置,2填在1位置,数字n填在n-1位置
  4. 对于一个长度为n的数组num,不一定整个数组都是1~n的数字,对于负数就属于垃圾,大于n的数也是垃圾,重复的数也是垃圾,为什么这么说,因为我们的目的是排1~x不间断连续的数字,其他的都没用,1~x排好了,这题也就拿下了
  5. 到这里兄弟们还觉得有难度吗?这不就是快拍的partition划分过程吗?拿下!!!!

🚀整个代码思路串一下

请添加图片描述

首先,我们准备两个数组偏移量left = 0right = n(n代表数组的长度),left的位置表示待排序的位置,right首先是垃圾区的边界,其次right还表示能够排完整个连续不间断正整数数列的长度,所以一开始,rightn

  • left当前位置的数字为left+1时,++left
  • left当前位置的数字处于left+1right之间且它本该在的位置也空出来的时候时,left位置的数与这个数本该在的位置交换,也就是num[left]num[num[left]-1]的数交换
  • 当上面两种情况都不成立时,left当前位置的数就是垃圾数,与r-1位置的数交换,并且--r垃圾区扩充

🚀Code

class Solution {
public:
    int firstMissingPositive(vector<int>& nums) {
        int left = 0;//左边界
        int right = nums.size();//右边界
        while (left < right) {//当left来到right时跳出循环
            if (nums[left] == left + 1) {//当left当前位置的数字为left+1时,++left
                ++left;
            }
            //垃圾区
            else if (nums[left] <= left || nums[left] > right || nums[left] == nums[nums[left] - 1]) {
                swap(nums[left], nums[--right]);
            }
            //当`left`当前位置的数字处于`left+1`到`right`之间
            //且它本该在的位置也空出来的时候时
            else {
                swap(nums[left], nums[nums[left] - 1]);
            }
        }
        return left + 1;//要加1,因为1在0位置,n就在n-1位置
    }
};

复杂度

时间复杂度:

O ( n ) O(n) O(n)

空间复杂度:

O ( 1 ) O(1) O(1)

请添加图片描述

评论 67
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿辉不一般

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值