1. 修正后的麦克斯韦方程组(允许磁单极子)
(a) 高斯磁定律(允许磁单极子)
\[\nabla \cdot \mathbf{B} = \mu_0 \rho_m,\]
其中 \(\rho_m\) 为磁单极子密度(单位:\(\text{C/m}^3\))。
物理意义:磁场具有散度,磁单极子作为“源”产生磁场,类似于电荷产生电场。
(b) 法拉第电磁感应定律(新增磁单极子项)
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} + \mu_0 \mathbf{j}_m,\]
其中 \(\mathbf{j}_m\) 为磁单极子电流密度(\(\mathbf{j}_m = \rho_m \mathbf{v}_m\),\(\mathbf{v}_m\) 为磁单极子运动速度)。
物理意义:变化的磁场或移动的磁单极子均能产生涡旋电场。
(c) 安培-麦克斯韦定律(无额外修正)
\[\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}.\]
(d) 高斯定律(保持原形式)
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}.\]
2. 标量场与矢量场的耦合方程
(a) 电势与磁单极子的关系
引入标量电势 \(\phi\) 和矢量磁势 \(\mathbf{A}\),通过洛伦兹规范:
\[\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}.\]
代入修正后的麦克斯韦方程,可得标量场与矢量场的耦合关系。
(b) 磁单极子对电势的影响
从高斯磁定律 \(\nabla \cdot \mathbf{B} = \mu_0 \rho_m\),结合 \(\mathbf{B} = \nabla \times \mathbf{A}\),可得:
\[\nabla^2 \mathbf{A} = -\mu_0 \rho_m.\]
此方程表明磁单极子密度 \(\rho_m\) 作为源,驱动矢量磁势 \(\mathbf{A}\) 的分布,类似于电荷驱动标量电势的泊松方程。
(c) 电场与磁单极子的相互作用
从法拉第定律修正项 \(\mu_0 \mathbf{j}_m\) 出发,结合 \(\mathbf{j}_m = \rho_m \mathbf{v}_m\),可得磁单极子在电场中的受力:
\[\mathbf{F}_m = q_m (\mathbf{E} - \frac{\mathbf{v}_m}{c} \times \mathbf{B}),\]
其中 \(c = 1/\sqrt{\mu_0 \varepsilon_0}\) 为光速。
物理意义:磁单极子受到的力包括电场力 \(q_m \mathbf{E}\) 和与磁场相关的洛伦兹力 \(-q_m \frac{\mathbf{v}_m}{c} \times \mathbf{B}\)。
3. 耦合作用的能量守恒
总能量守恒方程需包含磁单极子的贡献:
\[\frac{dU}{dt} = -\oint_{\partial V} \mathbf{S} \cdot d\mathbf{a} + \int_V \mathbf{j} \cdot \mathbf{E} \, dV + \int_V \mathbf{j}_m \cdot \mathbf{E} \, dV,\]
其中新增项 \(\int_V \mathbf{j}_m \cdot \mathbf{E} \, dV\) 表示磁单极子与电场的相互作用能。
4. 方程组的对称性
若同时允许电单极子和磁单极子存在,可通过交换 \(\rho \leftrightarrow \rho_m\)、\(\mathbf{E} \leftrightarrow \mathbf{B}\)、\(\varepsilon_0 \leftrightarrow \mu_0\) 实现理论的对称性。此时,标量场与矢量场的耦合形式完全对称。
5. 实际意义与挑战
物理意义
磁单极子的存在为统一电磁力与其他基本相互作用(如弱力)提供了理论可能。
实验验证
至今未观测到磁单极子,但其在量子场论(如狄拉克方程的奇点解)和宇宙学(如大爆炸磁单极子问题)中有重要理论价值。
技术挑战
若磁单极子存在,需重新设计电磁器件(如变压器、电机)的标量-矢量场耦合策略。
结论
若存在磁单极子,标量场(电势 \(\phi\))与矢量场(电场 \(\mathbf{E}\)、磁场 \(\mathbf{B}\))的耦合方程可通过修正后的麦克斯韦方程组描述,其核心特征为:
- 高斯磁定律引入磁单极子源项 \(\rho_m\);
- 法拉第定律补充磁单极子电流密度 \(\mathbf{j}_m\);
- 能量守恒需包含磁单极子与电场的相互作用。
这一理论框架为探索电磁场的更深层次对称性提供了基础,但实际应用仍需等待磁单极子的实验发现。