牛客网NC209794:使徒袭来

牛客网NC209794:使徒袭来

题目背景

在这里插入图片描述

问题分析

数学建模

  1. 设三位驾驶员的战斗力分别为 a, b, c
  2. 已知条件:a × b × c = n (n为输入的正整数)
  3. 目标:求 a + b + c 的最小值

解题思路

根据算术-几何平均值不等式(AM-GM不等式),对于任意正实数a, b, c,有:

(a + b + c)/3 ≥ (abc)^(1/3)

当且仅当 a = b = c 时,等号成立。

因此,当 a = b = c = n^(1/3) 时,a + b + c 取得最小值 3 × n^(1/3)

代码实现

#include<bits/stdc++.h>
using namespace std;
int main(){
    int n;
    cin>>n;
    double s=3*pow(n,1/3.0);//使用`pow(n,1/3.0)`计算n的立方根
    printf("%.3f",s);
    return 0;
}

代码解析

  1. 输入处理

    • 使用cin读取输入的整数n
    • 注意n的范围:n ≤ 10^9
  2. 核心计算

    • 使用pow(n,1/3.0)计算n的立方根
    • 乘以3得到最小和
    • 注意使用1/3.0而不是1/3,确保浮点数除法
  3. 输出处理

    • 使用printf("%.3f",s)输出结果
    • 保留3位小数

时间复杂度分析

  • 时间复杂度:O(1)
  • 空间复杂度:O(1)

注意事项

  1. 输入n的范围较大(≤10^9),但使用double类型足够处理
  2. 计算立方根时使用1/3.0而不是1/3,避免整数除法
  3. 输出时注意保留3位小数

示例验证

输入:1
输出:3.000
解释:当a=b=c=1时,乘积为1,和为3,符合要求

总结

本题通过运用AM-GM不等式,将看似复杂的优化问题转化为简单的数学计算。代码实现简洁高效,充分体现了数学思维在算法设计中的重要性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值