OctNet:学习高分辨率的深度 3D 表示

9 篇文章 4 订阅 ¥49.90 ¥99.00
OctNet是一种针对稀疏3D数据的深度学习表示,利用八叉树结构减少计算和内存需求,允许处理高分辨率的3D卷积网络。通过动态集中计算资源在数据密集区域,OctNet能够在不牺牲分辨率的情况下实现更深的网络,并适用于3D对象分类、方向估计和点云标记等任务。相比于传统3D网络,OctNet在保持性能的同时,能够处理更高的输入分辨率,提供更高的准确性,尤其是在方向估计和点云语义分割方面。
摘要由CSDN通过智能技术生成

提出了 OctNet,一种使用稀疏 3D 数据进行深度学习的表示形式。与现有模型相比,我们的表示能够实现深度和高分辨率的 3D 卷积网络。为了实现这一目标,我们利用输入数据的稀疏性,使用一组不平衡八叉树对空间进行分层分区,其中每个叶节点存储一个池化特征表示。这允许将内存分配和计算集中到相关的密集区域,并在不影响分辨率的情况下实现更深的网络。我们通过分析分辨率对多个 3D 任务(包括 3D 对象分类、方向估计和点云标记)的影响,展示了 OctNet 表示的实用性。

1介绍

在过去的几年里,卷积网络在计算机视觉的许多领域带来了显着的性能提升。在大多数情况下,网络的输入具有二维性质,例如在图像分类、对象检测或语义分割中。然而,3D 重建和图形的最新进展允许捕获和建模大量 3D 数据。同时,大型3D存储库如ModelNet、ShapeNet或 3D 仓库11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

初九爱编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值