基于 BP 神经网络特征提取的指纹识别应用

本文介绍了基于MATLAB的BP神经网络在指纹识别领域的应用,涉及图像预处理、特征提取(如端点和分叉点)以及特征匹配过程,通过噪声去除技术提高识别准确性。
摘要由CSDN通过智能技术生成
基于 MATLAB的BP神经网络指纹识别

1 前言

指纹是指人类手指上的条状纹路, 它们的形成依赖于胚胎发育时的环境。“没有2个完全相同的指纹”这一观点已经得到公认。指纹识别已经有了很长一段历史。

据考古学家证实:公元前6 000年以前, 指纹作为身份鉴别的工具已经在古叙利亚和中国开始应用。到了20世纪80年代,、光学扫描这2项技术的革新, 使得它们作为指纹取像的工具成为现实, 从而使指纹识别可以在其他领域中得以应用。

现在, 随着取像设备的引入及其飞速发展, 生物指纹识别技术的逐渐成熟, 可靠的比对算法的发现都为指纹识别技术提供了更广阔的舞台。

本项目实现了一种指纹识别系统,通过过滤过程来确定用户指纹是否与注册的指纹匹配。通过过滤技术对捕获的指纹进行处理,以从捕获的图像中去除噪声。去除噪声后的最终结果与注册的指纹进行特征匹配,以确定它们是否相同。

2 运行结果

3 课题介绍

本设计为基于MATLAB的指纹识别系统。本设计系统主要对指纹图像进行三方面处理:图像预处理、特征提取和特征匹配。图像预处理包括四个步骤:图像灰度化、滤波增强、二值化、细化,对指纹图像进行预处理后,去除了原图像的冗余部分,方便后续的识别处理;特征提取主要是提取指纹图像细化后的端点和分叉点;特征匹配是利用两个指纹的图像进行特征点比较,来确定两幅图像是否来自于同一手指。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值