图像分割技术研究及MATLAB仿真
摘要:作为一项热门的计算机科学技术,图像分割技术已经在我们生活中越来越普及。顾名思义这项技术的目的就是,将目标图像从背景图像中分离出去。由于这些被分割的图像区域在某些属性上很相近,因此图像分割与模式识别以及图像压缩编码有着密不可分的关系。完成图像分割所采用的方法各式各样,所应用的原理也不同。但他们的最终目的都是把图像中性质相似的某些区域归为一类,把性质差异明显的不同区域分割开来。通常在分割完成之后,我们就要对某些特定区域进行分析、计算、评估等操作,因而分割质量的好坏直接影响到了下一步的图像处理[],因此图像分割是图像处理的一个关键步奏。图像分割技术在各个领域都有着及其重要的意义;在工业上有卫星遥感,工业过程控制监测等等;在医学方面,水平集的分割方法还可以通过医学成像帮助医生识别模糊的病变区域;在模式识别领域还可应用到指纹扫描、手写识别、车牌号识别等等。
本课题的研究内容是对图像分割技术的几种常用的方法进行综述和比较,并基于其中一种方法进行MATLAB仿真测试,给出性能分析比较结果。
关键字:图像分割,MATLAB仿真,模式识别
Image Segmentation and Matlab Simulation
Abstract:Image segmentation is to image representation for the physically meaningful regional connectivity set, namely according to the prior knowledge of target and background, we on the image of target and background of labeling and localization, then separate the object from the background. Because these segmented image regions are very similar in some properties, image segmentation is often used for pattern recognition and image understanding and image compression and coding of two major categories. Because the generated in the segmented region is a kind of image content representation, it is the image of visual analysis and pattern recognition based and segmentation results of quality of image analysis, recognition and interpretation of quality has a direct impact. Image segmentation it is according to certain features of the image (such as gray level, spectrum, texture, etc.) to a complete picture of the image is segmented into several meaningful area. These features made in a certain region of consistent or similar, and between different regions showed significantly different. Image segmentation technology in various fields have most of the field and its important significance in digital image processing, image segmentation has a wide range of applications, such as industrial automation, process control, online product inspection, image coding, document image processing, remote sensing and medical image analysis, security surveillance, as well as military, sports and other aspects. In medical image processing and analysis, image segmentation for body occurrence of three-dimensional display of the diseased organ or lesion location determination and analysis plays an effective role in counseling; in the analysis and application of road traffic conditions, available image segmentation technique from monitoring or aerial fuzzy complex background separation to extract the target vehicle.
The research content of this paper is to review and compare several methods of medical image segmentation, and based on one of the methods to carry out MATLAB simulation test, the results of performance analysis are given.
Key word:Image segmantation;Matlab simulation;Pattern recognition
<