代码随想录算法训练营第57天|647. 回文子串,516.最长回文子序列

647. 回文子串

力扣题目链接

思路

动态规划
  • dp[i][j] 表示[i,j]的子字符串是否为回文字符串
  • 递推公式:
  • s[i]!=s[j] dp[i][j]=false;
  • s[i]==s[j] if(j-i<=1) dp[i][j]=true; else if(dp[i+1][j-1]) dp[i][j]=true;
  • 初始化:都初始化为fals
  • 遍历顺序:从下往上,从左往右
双指针法
  • 枚举每一个可能的回文中心,然后用两个指针分别向左右两边拓展,当两个指针指向的元素相同的时候就拓展,否则停止拓展。
  • 一个元素可以作为中心点,两个元素也可以作为中心点

代码

动态规划
class Solution {
public:
    /*
     * dp[i][j] 表示[i,j]的子字符串是否为回文字符串
     * 递推公式:
     * s[i]!=s[j] dp[i][j]=false;
     * s[i]==s[j] if(j-i<=1) dp[i][j]=true; else if(dp[i+1][j-1]) dp[i][j]=true;
     * 初始化:都初始化为false
     * 遍历顺序:从下往上,从左往右
    */
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(),vector<bool>(s.size(),false));
        int result=0;
        for(int i=s.size()-1;i>=0;i--){
            for(int j=i;j<s.size();j++){
                if(s[i]==s[j]){
                    if(j-i<=1){
                        dp[i][j]=true;
                        result++;
                    }
                    else if(dp[i+1][j-1]){
                        dp[i][j]=true;
                        result++;
                    }
                }
            }
        }
        return result;
    }
};
我的解法
class Solution {
public:
    /*
     * dp[i][j] 表示[j,i]的子字符串是否为回文字符串
     * 递推公式:
     * 初始化:for(int i=0;i<s.size();i++) dp[i][j]=true;
     * 遍历顺序:从左往右
    */
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(),vector<bool>(s.size(),false));
        for(int i=0;i<s.size();i++){
            dp[i][i]=true;
        }
        for(int i=1;i<s.size();i++){
            for(int j=0;j<i;j++){
                if(s[i]==s[j]){
                    if(j+1==i) dp[i][j]=true;
                    else dp[i][j]=dp[i-1][j+1];
                }
                else dp[i][j]=false;
            }
        }
        int result=0;
        for(int i=0;i<s.size();i++){
            for(int j=0;j<s.size();j++){
                if(dp[i][j]) result++;       
            }
        }
        return result;
    }
};
  • 时间复杂度O(n^2)
  • 空间复杂度O(n^2)
双指针法
class Solution {
public:
    int extend(const string& s, int i, int j, int n){
        int res=0;
        while(i>=0&&j<n&&s[i]==s[j]){
            res++;
            i--;
            j++;
        }
        return res;
    }
    int countSubstrings(string s) {
        int result=0;
        for(int i=0;i<s.size();i++){
            result+=extend(s,i,i,s.size()); // 以一个元素为中心点
            result+=extend(s,i,i+1,s.size()); // 以两个元素为中心点
        }
        return result;
    }
};
  • 时间复杂度O(n^2)
  • 空间复杂度O(1)

516.最长回文子序列

力扣题目链接

思路

  • dp[i][j] 表示在[i,j]中最长回文子序列的长度
  • 递推公式:if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;
  • else dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
  • 初始化:对角线都为1
  • 遍历顺序:从下往上,从左往右

代码

class Solution {
public:
    /*
     * dp[i][j] 表示在[i,j]中最长回文子序列的长度
     * 递推公式:if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;
     * else dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
     * 初始化:对角线都为1
     * 遍历顺序:从下往上,从左往右
    */
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(),vector<int>(s.size(),0));
        for(int i=0;i<s.size();i++) dp[i][i]=1;
        for(int i=s.size()-1;i>=0;i--){
            for(int j=i+1;j<s.size();j++){
                if(s[i]==s[j])
                    dp[i][j]=dp[i+1][j-1]+2;
                else
                    dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
            }
        }
        return dp[0][s.size()-1];
    }
};
  • 时间复杂度O(n^2)
  • 空间复杂度O(n^2)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值