MagicAnimate 是一个基于扩散模型的开源人像动画框架,旨在实现时间一致的高质量动画生成。
1. 视频扩散模型(Video Diffusion Model)
1.1 工作原理
视频扩散模型是 MagicAnimate 的核心,负责生成时间一致的动画帧。它基于扩散模型(Denoising Diffusion Probabilistic Models, DDPM),该模型通过逐步去噪过程生成高质量图像。为了扩展到视频,MagicAnimate 使用 3D 时序 Unet 模型,该模型能够处理时间序列数据,并捕捉帧与帧之间的依赖关系。
-
3D 时序 Unet:
- 传统的 2D Unet 模型被扩展到 3D,以处理视频数据。3D 卷积层能够捕捉空间和时间上的特征。
- 在每个时间步,模型接收当前帧和前一帧的信息,并通过时序注意力层聚合时间信息。
-
时序注意力层:
- 通过注意力机制,模型能够关注视频序列中不同帧之间的相似性,从而更好地捕捉时间上的依赖关系。
- 这有助于生成时间一致的动画帧,避免帧与帧之间的不自然变化。