机器学习入门?十大机器学习算法,学习复盘:七月在线机器学习集训营

参加了七月在线的机器学习集训营,掌握了监督学习、无监督学习和强化学习三大类算法,包括线性回归、SVM、KNN、逻辑回归、决策树、K-Means、随机森林、朴素贝叶斯、降维和梯度增强等基本机器学习算法。
摘要由CSDN通过智能技术生成

学习路径

之前报名学习了七月在线的机器学习集训营,掌握了机器学习算法全面性以及细节,总结了一些经验

感兴趣的可以自取哈
链接:https://pan.baidu.com/s/1WpbUh_2K_daIiHHdoWXCXQ
提取码:j4vg 

算法

机器学习算法分类:监督学习、无监督学习、强化学习
基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(KNN)、逻辑回归、决策树、k平均、随机森林、朴素贝叶斯、降维、梯度增强

算法分类

机器学习算法大致可以分为三类:

监督学习算法 (Supervised Algorithms):在监督学习训练过程中,可以由训练数据集学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。该算法要求特定的输入/输出,首先需要决定使用哪种数据作为范例。例如,文字识别应用中一个手写的字符,或一行手写文字。主要算法包括神经网络、支持向量机、最近邻居法、朴素贝叶斯法、决策树等。
无监督学习算法 (Unsupervised Algorithms):这类算法没有特定的目标输出,算法将数据集分为不同的组。
强化学习算法 (Reinforcement Algorithms):强化学习普适性强,主要基于决策进行训练,算法根据输出结果(决策)的成功或错误来训练自己,通过大量经验训练优化后的算法将能够给出较好的预测。类似有机体在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。在运筹学和控制论的语境下,强化学习被称作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值