干货|如何完整准确填写实验记录

如何完整准确填写原始记录

1

人员及时间内容填写

在记录中以签名的方法记录完成该项工作的人员;检测时间应记录某检测项目的开始检测时间和检测结束时间。

2

样品信息的填写

在样品记录中应详细包含所有的样品信息,在检测记录中可只记录样品名称和实验室样品唯一性编号,以及样品到达实验室后的处置记录。

3

依据的检测方法的填写

在不引起混淆的情况下,可只记录方法的标准代号及发布年号或依据的文件名称、编号及发布年号。如果要记录实验室标准操作规程,此时可只记录名称、文件编号及版本号。当依据的文件中规定有多个方法时,应准确记录方法名称或章条号,确保方法依据的唯一性。

4

仪器设备及标准物质填写

1、 记录主要的直接出具数据的关键设备,如果实验室认为其他设备也很重要,也应记录。

通常,公众号“CNAS-CMA”提醒,应记录使用的仪器设备名称、仪器设备的唯一性编号,必要时还应记录量值溯源信息;

2、 记录所使用的标准物质及质控物质的名称、有证标准物质的编号及其有效期,标准溶液的标准值及有效期,必要时还要记录储备液的有效期、使用液的有效期。

5

重要配件试剂药品和工具填写

必要时,应记录检测中使用的重要配件(如色谱柱及其规格型号)、对检测结果有直接影响的重要试剂药品和工具等。

检测记录设计人员应对这些内容进行识别,确保不会漏记,必要时可与有关人员讨论确定。

6

环境条件填写

检测方法对环境条件有要求,实验室要记录检测当时的环境条件。

记录环境条件的目的是为了证明检测当时的环境条件满足方法标准的要求。因此,检测人员在检测开始前,应经过对环境条件满足方法要求的判断,确认满足要求之后记录。

7

检测过程记录

1、通常,检测依据的方法文件中对过程有详细的规定,实验室应用简略的、逻辑严密的文字记录实际检测操作过程,用以证明检测过程满足依据文件的要求。

示例:

某方法文本要求样品在烘箱中(105+5)℃条件下烘干2h。

实验室应记录烘干开始时间、烘干结束时间、开始的温度、中间温度、烘干结束温度5个数据,用以证明烘干过程满足方法要求。

2、 设计过程记录表单时,可将文字描述部分固定,留出数字空白处,检测人员在记录时,只需填写数据即可。通常,至少在一段时间内,仪器设置的条件记录不会改变,这些记录可固定。

3、 校准过程记录,应记录校准曲线设置的浓度点的浓度,仪器响应信号值、校准函数及相关系数表达式或图形。必要时(如果有),还应有校准曲线满足质量控制要求的结果评价记录。

4、 据获取及计算转换、数据修约及结果的最终表达过程记录,数据的获取记录从仪器上直接获取的图表来表示。在不引起混涌的情况下,可直接记录最后(修约后的)结果,数据计算转换可用公式表达。

5、质量控制记录,必要时(如果有),应有质量控制及结果满足要求的评价记录。

在化学定量分析领域,公众号“CNAS-CMA”提醒,通常的质量控制记录包括回收率、重复性、空白等,记录的内容包括方法回收率、重复性限的要求,本次检测的回收率和重复性误差,以及满足要求的评价。

6、必要时,还应有测量不确定度评定的结果记录、方法检出限、定量限、结果解释及意见等记录

金现代LIMS实验室管理系统内置易绘ELN电子实验记录本,可以通过拖拉拽的方式绘制实验室模板,无需专业IT人员辅助。

金现代LIMS可以实现数据标签化,智能分析,支持从实验模板绘制到实验记录填写、复核、审批,以及实验报告生成,实现了实验数据的标签化、资产化。支持按照客户需要的各种维度对数据进行智能分析。

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值