Anaconda命令参考,安装tensorflow-gpu、Cuda、cudnn,pytorch、jupyter

Anaconda图形界面打不开了,使用Anaconda Prompt命令行同样干活。

1 管理conda

(1) 查看conda版本

conda --version

(2) 升级conda自身

conda update -n base -c defaults conda

(3) 升级conda当前环境所有包

conda clean --all

conda update --all

(4) conda设置国内源

清华的源:
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64

注意是http,不是https,url后面要带上平台

(5)显示已安装的源

conda config --show channels

(6) 删除已安装源

conda config --remove channels

(7) 安装包

conda install package=version

(8)查看已安装的包&查找可安装包

pip list 或 conda list

conda search somePackage

(9) 删除环境&移除包

删除someEnv配置环境及其中的包

conda remove -n someEnv --all

删除someEve中的packageName

conda remove -n someEnv packageName

或 conda uninstall semePackage

2 管理运行环境

(1) 创建新运行环境、复制运行环境

conda create --name newEnvName numpy scipy python=2.8    创建名为newEnvName的新运行环境,并包含numpy scipy两个包,使用Python的版本为2.8。

假如想备份已有的环境(吐槽一下python包实在太多了,相互之间还存在着不兼容),如下可以为env创建一个名为envBackup的运行环境:

conda create -n envBackup --clone env

(2) 激活新运行环境

  • Windows: activate snowflakes
  • Linux and macOS: source activate snowflakes

(3) 查看所有运行环境

conda env list(或conda info --envs)    查看所有运行环境

当前激活的运行环境有且只有一个,前有星号(*)标注.

(4) 修改当前运行环境为非激活状态

  • Windows: deactivate
  • Linux and macOS: source deactivate

(5)删除运行环境

conda remove -n flowers --all
删除运行环境之后可以通过命令查看运行环境是否删除: conda info -e

3.安装tensorflow-gpu

首先查找相应的python(3.8)版本和需要安装的tensorflow(2.4)版本或pytorch(1.8.2),从navida官网下载相对应的cuda(V11.1)和cudnn(8.0.5)并安装。

用如下命令安装

conda create --name tensorflow23py38 python=3.8

conda activate tensorflow23py38

conda install tensorflow-gpu=2.4.0

或者pip install tensorflow-gpu==2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

conda install cudatoolkit=11.1

conda install cudnn=8.0.5

验证tensorflow是否安装成功,运行python

import tensorflow as tf

os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'  #这个是2.4版本的问题,别的版本会自动注册XLA

tf.test.is_gpu_available()

或者

from tensorflow.python.client import device_lib

print(device_lib.list_local_devices())

如果有GPU信息则表明安装成功。

4.安装pytorch gpu

一种简单的方式:

pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple

上面的命令下载过程太慢,把所需的安装包下载下来,独立安装,

从:https://download.pytorch.org/whl/lts/1.8/torch_lts.html,下载所需的pytorch版本(1.8.1),torchvision(0.9.1), torchaudio(0.8.1),注意cpu版本和gpu版本。

下载下来后,

conda install cu111/torch-1.8.1%2Bcu111-cp38-cp38-win_amd64.whl

conda install cu111/torchvision-0.9.1%2Bcu111-cp38-cp38-win_amd64.whl

conda install torchaudio-0.8.1-cp38-none-win_amd64.whl

验证pytorch是否安装成功,进入conda相应的python环境,

import torch

print(torch.__version__ )# 查看pytorch版本
print(torch.cuda.is_available())    # 判断pytorch是否支持GPU加速
print(torch.version.cuda)   # 查看CUDA版本
print(torch.backends.cudnn.version())   # 查看cuDNN版本
print(torch.cuda.get_device_name()) # 查看显卡类型,设备索引默认从0开始

5.设置jupyter notebook

在tensorflow23py38环境下,安装ipykernel内核包

pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple

python -m ipykernel install --name tensorflow23py38 --display-name tensorflow23py38

启动jupyter notebook,切换内核即可。

6.安装其他包

pip install gym=0.19.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install gym[atari] -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install stable-baselines[mpi] -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: anaconda是一个Python发行版,包含了许多常用的科学计算和数据分析的库。 CUDA是英伟达公司推出的一种并行计算平台和编程模型,可以利用GPU的并行计算能力加速计算。 cuDNNCUDA深度神经网络库,提供了高效的深度学习算法实现。 PyTorch是一个基于Torch的开源机器学习库,支持动态计算图,具有灵活性和高效性。它也支持CUDA加速,可以利用GPU进行深度学习计算。 ### 回答2: Anaconda是一个Python数据科学平台,它使得Python安装和使用更加方便。Anaconda也包含了许多科学计算的包和工具,比如NumPy,SciPy和Pandas等。使用Anaconda用户可以很方便地创建Python虚拟环境和安装依赖。 CUDA是一种由NVIDIA开发的并行计算平台和编程模型。它使得全球各地的科研人员、工程师和开发者可以运用GPU的强大算力来加速各种计算任务,如深度学习、科学计算、图形处理等。 cuDNNCUDA的一个加速库,即CUDA Deep Neural Network library。它为深度神经网络框架提供了加速和优化功能,包括快速的卷积操作和大量的内存优化技术。cuDNN被广泛应用于许多深度学习框架,例如TensorFlowPyTorch和Caffe等。 PyTorch是一个开源的Python深度学习框架,它是Facebook AI Research实验室主导开发的。PyTorch最大的特点是使用动态图技术,与大多数深度学习框架使用的静态图技术不同,这使得它的使用更加灵活和自由。PyTorch不仅提供了标准的深度学习构建块,如卷积神经网络和递归神经网络等,还提供了许多实用的工具来简化模型训练和部署。PyTorch在学术界和工业界都有很高的用户群体和口碑。 综上所述,AnacondaPython数据科学提供了一个全面的解决方案,CUDAcuDNN为深度学习提供了强大的计算加速,而PyTorch则是一个灵活、高效和易于使用的深度学习框架。这些工具和平台的结合为科学计算和深度学习带来了很大的便利和突破。 ### 回答3: Anaconda是一个Python的科学计算平台。它包含了常用的Python科学计算库,如Numpy、Scipy、Matplotlib等,并提供了方便的安装、管理和更新工具。Anaconda也支持创建不同的Python环境,让用户可以灵活地选择和管理不同的库。 CUDA是英伟达开发的通用并行计算架构,它可以利用GPU的强大并行计算能力加速各种计算任务。在CUDA的支持下,用户可以使用CUDA C、CUDA C++、CUDA Fortran等语言进行GPU编程。CUDA还提供了各种库和工具,如cuDNN、cuBLAS、cuSPARSE等,可以方便地进行科学计算和深度学习等任务。 cuDNNCUDA Deep Neural Network)是CUDA提供的深度学习库之一,它提供了一系列高度优化的算法和数据结构,可以加速深度神经网络的训练和推断过程。cuDNN支持很多流行的深度学习框架,如TensorFlowPyTorch、Caffe等。通过使用cuDNN,用户可以充分利用GPU的计算能力加速深度学习任务。 PyTorch是一个基于Python的开源深度学习框架。它采用动态图形方式进行模型构建,支持灵活的动态计算图和自动求导机制,可以方便地进行模型的调试和优化。PyTorch还提供了一系列高效的深度学习算法和数据结构,如Convolution、Pooling、Linear、BatchNorm等,可以方便地构建各种深度神经网络。 综上所述,Anaconda提供了Python科学计算的全套解决方案,CUDA可以利用GPU的强大计算能力加速各种计算任务,cuDNN可以加速深度学习任务,而PyTorch则为深度学习提供了一种灵活高效的开发框架。这些工具的结合可以让用户更方便地进行各种科学计算和深度学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值