Win10下 anaconda3 + cuda11.3 + TensorFlow_GPU2.6.0 + Pytorch_GPU1.10.1

本文详细介绍了在Windows 10环境下,如何安装CUDA11.3、cuDNN8.2.1,以及如何配置Anaconda来安装TensorFlow_GPU 2.6.0和Pytorch_GPU 1.10.1。通过遵循步骤,包括驱动安装、环境配置、库安装和验证,确保GPU支持的深度学习框架成功运行。
摘要由CSDN通过智能技术生成

软件版本

个人N卡2070 super,驱动512.15,支持最新的CUDA11.6(方法:英伟达控制面板—>帮助—>系统信息—>组件)。但TensorFlow_GPU 2.6.0、Pytorch_GPU 1.11.0目前并未适配到CUDA11.6。
在这里插入图片描述

TensorFlow_GPU

tf_ GPU 2.6.0 需搭配 CUDA11.2,cuDNN8.1,python3.6~3.9
tensorflow gpu版对CUDA、cuDNN、python的要求

Pytorch_GPU

pytorch_GPU 1.11.0 支持 CUDA10.2、CUDA11.3

点击查看torch、torchvision、torchaudio版本对应关系

CUDA CUDAToolkit Pytorch
11.3 11.3 1.11.0,1.10.1,1.10.0,1.9.1,1.9.0,1.8.1
11.1 11.1 1.8.0
11.0 11.0 1.7.1,1.7.0
10.2 10.2 1.11.0,1.10.1,1.10.0,1.9.1,1.9.0,1.8.1,1.8.0,1.7.1,1.7.0,1.6.0,1.5.1,1.5.0
10.1 10.1 1.7.1,1.7.0,1.6.0,1.5.1,1.5.0,1.4.0
10.0 10.0 1.2.0,1.1.0,1.0.1,1.0.0
9.2 9.2 1.7.1,1.7.0,1.6.0,1.5.1,1.5.0,1.4.0,1.2.0
9.0 9.0 1.1.0,1.0.1,1.0.0
8.0 8.0 1.0.0

尝试了 tf_GPU=2.6.0、CUDA=11.2、cuDNN=8.2.0、pytorch_GPU=1.8.0 or 1.10.1,结果 tf 没问题,pytorch总失败。最后安装 tf_GPU=2.6.0、CUDA=11.3、cuDNN=8.2.1、pytorch_GPU=1.10.1 两个都成功。

第一步:安装N卡驱动

官网下载对应显卡型号的驱动,注意带notebooks针对的是笔记本电脑。安装位置可自定义,也可默认。

第二步:安装Anaconda

(1)官网下载
Windows 64bit(对应操作系统位数)
在这里插入图片描述
(2)以管理员运行
在这里插入图片描述

自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.无mkl支持; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 TI 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]://home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: bazel build --config=opt --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值