通过平面向量角度认知世界

通过这几天对平面向量的研究,我是越来越有兴趣了,因为平面向量让我开拓眼界,给我一个新的认知角度来看待世界,“问题是最好的老师”,我讲通过自己提出问题,来进行解决和总结,让自己对平面认识深刻和更好利用。

一、抽象能力:

抽象是从众多的事物中抽取出共同的、本质性的特征而舍弃其非本质的特征.例如苹果、香蕉、生梨、葡萄、桃子等,它们共同的特性就是水果.得出水果概念的过程,就是一个抽象的过程。平面的抽象是把以前平面只有大小没有方向的数量,把大小和方向不相关的两个概念进行抽象,抽象成在二维平面内既有方向又有大小的量这就是平面向量。向量是如何相等的?

长度相等且方向相同的两个向量叫做相等的向量。即:若向量a与向量b相等,则记作向量a=向量b,相等向量互相平行,任意两个相等的非零向量都可以用同一有向线段来表示,并且与有向线段的起点无关。把没有长度的0,抽象成了零向量,零向量的方向与任一向量平行,垂直。零向量可以有很多方向,却只有一个长度,我们可以把大家公认的长度,抽象为单位长度,我们在平面向量里抽象为单位向量。单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。一个非零向量除以它的模,可得所需单位向量。一个单位向量的平面直角坐标系上的坐标表示可以是:(n,k) ,则有n²+k²=1。

二、高维思考

例如:大家都知道什么是“画地为牢”。就是你在一张纸上画一只老虎,然后你想困住它,怎么弄?哈哈,画地为牢,你只要在纸上画上一个牢,把纸里的老虎困住就行了。为什么老虎走不出来?因为在一张纸的二维平面里面,没有“高”这个概念。正因为如此,老虎才被人画牢所困。那么三维的老虎呢?三维的老虎需要真正的笼子,因为二维的牢困住二维的虎,三维的虎当然要用三维的牢才可以困住。也就可以说,二维的牢困不住三维的虎,因为三维的虎比二维的虎多出一个“高”来。就是说,在维度上,我们可以认为三维比二维高级。

在平面向量方面我们就可以把方向与长度做为整体来进行考虑,把两个不想关的概念“方向”和“长度”抽象成一个整体为平面向量。对方向和长度我们可以利用平面向量的维度来考虑,如果没有没有学习过平面向量,我们就没有这个维度来认知长度和方向的统一。我们在生活中整体考虑有好多,方向:我们常见的方向有上北下南,左西又动,北偏西多少度。南偏西多少度等等可以利用这些来表示方向,但是我们可以把这些表示都可以看成一个整体,什么是不变的,在这里“方向就是不变的”所以我们可以把方向看做成一个整体。面积:正方形的面积,三角形的面积,圆形的面积,我们都不用考虑他的公式,我们可以把他们做成一个整体来看,他们的面积就是一个整体。数字也可以作为一个整体,不管你是无理数还是有理数,他都是一个数,一个数除以一个数都会得到一个数。速度:只要你动了一定会出现一个距离和时间,这样我们就得到了一个速度。不管你是走的,还是坐车,还是坐飞机他们都是速度。

我大胆的猜测一下只要是比的话,我们都可以看成是整体,比出来的东西有一个是不变的。

三、平面向量三角形、四边形法则

什么是平面向量三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,首尾相连、连接首尾、指向终点。

什么是平面向量四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,共起点 对角连。

平面向量三角形和平面四边形法则是如何转换的:它是一种共点力的合成法则.这一法则通以表示两个共点力的有向线段为邻边作一平行四边形,该两邻边之间的对角线即表示这两个力的合力的大小和方向.有时为了方便也可以只画出一半的平行四边形,也就是力的三角形法则.即把两个共点力中的一个平移,使它们首尾相接,再用一条线与两个力连接成一个三角形,第三边就是合力.  三角形定则平行四边形定则的实质是一样的。

三角形法则和平行四边形法则的思想含义:把数学和物理等学科统一起来了,如可以利用具有几何意义的复数运算来定义向量的运算,把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何与三角问题,利用三角形和平面四边形法则多了一种角度,看问题更简单了,把复杂的问题变成简单的问题,更容易解决。

四、多向量为什么可以只分解为两个正交分量:

其实把平面向量进行正交分解的目的就是为了进行坐标运算。设i,j表示平面直角坐标系里的标准正交基(满足i⊥j,并且|i|=|j|=1,也就是说i,j是单位正交向量组)。这样任意一个向量a可以分解为如下形式:a=xi+yj,其中(x,y)就是向量a在以i,j为基的平面内的坐标。显然x和y就是a在i,j方向上的投影,因此x=|a|cos<a,i>,y=|a|cos<a,j>。在进行向量运算的时候可以省去基向量,这样向量的运算也就转化成了坐标的运算。这也可以看出,选取的基不同,a分解后的结果也不同,因此平面向量的正交分解不是唯一的。再深入研究标准正交基的性质,若是xi+yj=0,则一定可以得到x=y=0,也就是说i和j是线性无关的。因此对于任意一组线性无关的向量α和β均可以进行运算使其变为单位正交向量。这个过程就是施密特正交化。施密特正交化不仅可以在平面向量中应用,还可以在n为线性空间中应用。

正交分解带来的启迪:1.力是矢量F′在X轴Y轴上的分矢量F′x和F′y是矢量,分量为正值表示分矢量的方向跟坐标轴的方向相同,分量为负值表示分矢量的方向跟坐标轴的方向相反。2.确定矢量正交分量的坐标轴,不一定是取竖直方向和水平方向。例如,分析物体在斜面上的受力情况,一般选取x轴与斜面平行,y轴与斜面垂直。坐标轴的选取是以使问题的分析简化为原则。通常选取坐标轴的方法是:选取一条坐标轴与物体运动的加速度的方向相同(包括处理物体在斜面上运动的问题),以求使物体沿另一条坐标轴的加速度为零,这样就可得到外力在该坐标轴上的分量之和为零,从而给解题带来方便。3、正交分解是先将线性方程组Ax=b的系数矩阵A分解为一个正交矩阵Q和一个对角可逆上三角矩阵R的乘积。然后通过求解上三角方程组Rx=Qb而求得原方程组的解,这种方法一般比三角分解法运算量大,但数值稳定性较好。

五、有了向量的认知的能力,思考是如何飞翔的

1、我们在一开始当学习向量的时候,我们一定接触到了很多新的知识点,如果在没有互联网下,在老师讲课下,我们只能学习向量的本身知识,而不能学习到向量带来的思想,我们首先对平面向量有一个基本认识,在学习平面向量过程中,我们不仅要注重平面向量的结论,我们更要注重学习平面向量过程,我们要在向量里面学习的思想挺多,我们要把这些思想应用起来。

2、平面向量是解决数学问题的一种基本工具,在运用向量法处理函数问题、三角问题,函数问题时,给传统的解法注入了新的活力,为数学中的推理、运算开辟了新的途径,实现了几何的代数化,为数和形的结合做了很好铺垫,而且运用向量法解题在知识的联系、转化和问题的解决过程中有着其他知识点难以启迪的优势,由于向量这一新的视角,进一步扩宽了思维的渠道,要从思想方法上研究平面向量的实质,修复原有的认知。

3、平面向量与其它知识的联系较多,特别是三角、解析几何、立体几何、复数等。平面向量既有代数形式又有几何意义,对于一道平面向量的问题,我们不仅仅可以利用代数方法又可以从几何方法的角度考虑。

4、平面向量中有着丰富的数学思想方法,在解决有关向量问题时,我要是能统分运用这些数学思想方法,可使许多问题获得简洁、巧妙解决。1、方程思想2、树形结合思想就是将抽象数学语言与直观、具体的图形结合起来,通过数与形的相互转化,达到化难为易,化繁为简的目的。3、分类讨论就是由于某种原因使得所给对象不能进行统一研究时,对研究对象进行分类讨论,然后对每一类结果分别研究,得出每一类结论,分类讨论实质上是一种“化整为零,各个击破”。

5、平面向量给我一个新的角度去认知世界,让我去开阔眼界,让我提升了一个维度,不在局限,有了平面向量的维度我可以发现更多有趣的事,更可以去创造。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值