18、Dask系统概念与可扩展DataFrame工具解析

Dask系统概念与可扩展DataFrame工具解析

1. Dask关键系统概念

1.1 资源竞争与隔离

在集群环境中,资源竞争是常见问题。例如,同一节点上的两个机器学习任务可能都试图使用全部CPU资源。许多集群管理器无法提供完全隔离,这意味着任务若被调度到不合适的节点,性能可能不佳。常见的解决办法是按完整节点请求资源量,避免其他作业与自身作业同时调度。不过,严格隔离也有弊端,特别是当隔离框架不支持突发时,可能导致资源浪费,但对于关键任务工作流,这往往是一种权衡。

1.2 机器容错性

在分布式计算中,容错性是关键概念。随着计算机数量增加,任何一台计算机出现故障的概率也会提高。在一些小型Dask部署中,机器容错性可能没那么重要。Dask的核心容错方法是重新计算丢失的数据,这也是许多现代数据并行系统采用的方法。但在考虑Dask的容错性时,需要考虑Dask所连接组件的故障情况。对于分布式存储,有不同的权衡。Dask在故障时重新计算意味着用于计算的数据在需要时仍可重新加载,但在一些流系统中,可能需要配置更长的TTL或设置缓冲区以提供Dask所需的可靠性。此外,Dask的容错性不涵盖领导节点,部分解决方案是采用高可用性,即由Dask外部的系统监控并重启Dask领导节点。容错技术在缩容时也常被使用,因为容错和缩容都涉及节点的丢失。

1.3 可扩展性(上下伸缩)

可扩展性指分布式系统处理更大问题的能力,以及在需求减少时收缩的能力。在计算机科学中,可扩展性通常分为水平扩展和垂直扩展。水平扩展是添加更多计算机,垂直扩展是使用更强大的计算机。另一个重要考虑因素是自动伸缩与手动伸缩。Dask的自动伸缩器可在需要时水平扩展添加工作节点

资源库提供了一套运用Python编程语言卷积神经网络架构实现的网络入侵识别系统源代码及相关文档。该系统的核心功能在于对Dos攻击、常规访问、端口扫描、远程越权及本地提权这五类网络数据流进行精确分类识别。 原始输入数据由数值字符混合构成,系统设计的关键环节在于将此类文本格式信息转换为适合卷积神经网络处理的图像表征形式。预处理模块内置两种关键数据处理方法:独热编码处理最小最大归一化处理。 数据处理流程分为两个关键阶段: 第一阶段实施特征类型转换。针对数据集中存在的三种离散型特征参数(包括协议类型、服务类型及连接状态标记),采用独热编码技术将其转化为数值型特征向量。 第二阶段执行数据标准化处理。通过最小最大归一化算法将所有特征维度数值线性映射至[0,1]区间,确保各特征量纲统一。经过完整预处理流程后,原始文本数据被系统化重构为五个独立的数据文件,分别对应不同流量类型,存储于指定目录中。 训练数据集测试数据集及其预处理中间结果已完整收录于项目资源目录内,为后续模型训练验证提供完整数据支持。该系统通过将网络流量特征转化为图像化表征,充分利用卷积神经网络在图像识别领域的优势,实现了对复杂网络入侵行为的高效识别分类。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值