24、地理方案数据验证工具链解析

地理方案数据验证工具链解析

1. 相关工作与科学贡献

在铁路信号系统验证领域,有不少相关的工作。此前的研究中,形式化方法被用于验证传统和现代的信号系统。例如,有对ETCS规范以及欧洲铁路交通管理系统的验证工作。也有研究探讨联锁控制表的静态检查如何补充模型检查方法,还有人开发了对铁路拓扑和信号系统进行建模的方法。

不过,这些工作与我们目前的工作有所不同。之前的部分工作检查动态属性,而我们的工作侧重于验证基础设施的静态属性。另外,有使用基于B - 方法的OVADO工具进行数据验证的工作,他们大量依赖B - 方法的集合论和一阶逻辑来描述数据,将方案计划建模为一维笛卡尔坐标系。但该工具验证时间从几分钟到数小时不等,且不太适合西门子的验证工具生态系统,而我们实现的验证时间仅在几分钟范围内,并且是在比其先进十多年的硬件上实现的。

还有Luteberget开发的Junction工具套件,能验证基础设施数据的一致性和合规性,验证任务的运行时间在秒级。不过它是在新元素放入方案计划时进行“即时”验证,而我们需要在方案计划设计完成后对整个方案进行验证。同时,我们使用一阶逻辑表达属性,而Luteberget的工作受限于Horn子句。

我们的工作在科学贡献方面,提供了一个将不同技术(DSL、SMT求解、转换、反例可视化)结合起来进行高效数据验证的整体视图:
- 基于SMT - Lib2制定了一种DSL,利用类型类捕获信号元素并将其映射到拓扑结构。
- 基于底层SMT求解器的证明生成能力,定义了一个调用不满足性检查的迭代过程。
- 报告了一个确保安全属性在一阶逻辑中被准确编码的独特过程。
- 设计了一个通过焦点小组工具选择的反例显示方式,并将其集成

MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值