感知哈希算法——Python实现

本文介绍了一种用于图像匹配的感知哈希算法。通过将图像缩放、转为灰度、比较像素灰度与平均值来生成64位指纹,以此判断图像相似性。在Python中实现后,结果显示在某些情况下匹配效果不尽如人意,可能是由于特征抽取的局限导致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

现在手中只有一张图像需要在一个集合中去找到与之最相近的那一张,这个过程实际是一个匹配的过程,特别是在多模态医学图像中解决这样的问题是比较迫切的,今年试验了一种广泛使用的算法——感知哈希算法!具体的实验结果将在下文中给出。

2. 算法原理

step1:缩小图片尺寸
将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构、明暗等基本信息。
这里写图片描述
step2:转为灰度图片
将缩小后的图片, 转为64级灰度图片。
这里写图片描述
step3:计算灰度平均值
计算图片中所有像素的灰度平均值
step4:比较像素的灰度
将每个像素的灰度与平均值进行比较, 如果大于或等于平均值记为1, 小于平均值记为0。
step5:计算哈希值
将上一步的比较结果, 组合在一起, 就构成了一个64位的二进制整数, 这就是这张图片的指纹。
step6:对比图片指纹
得到图片的指纹后, 就可以对比不同的图片的指纹, 计算出64位中有多少位是不一样的. 如果不相同的数据位数不超过5, 就说明两张图片很相似, 如果大于10, 说明它们是两张不同的图片。

3. Python实现

# -*- coding=utf-8 -*-
import numpy as np
from PIL import I
### 感知哈希算法实现图片去重 #### 计算感知哈希值 为了有效去除重复图像,可以利用感知哈希(Perceptual Hash, pHash)技术来计算每张图片的独特指纹。pHash 的核心在于即使面对经过轻微变换处理过的同一幅图也能保持较高的匹配率[^1]。 ```python import imagehash from PIL import Image def calculate_phash(image_path): img = Image.open(image_path) hash_value = str(imagehash.phash(img)) return hash_value ``` 此函数接收一张图片路径作为输入参数并返回其对应的十六进制字符串形式的感知哈希码。 #### 存储与检索哈希值 对于大规模数据集而言,在初次加载时即为所有待查证对象建立索引至关重要。这一步骤通常涉及遍历整个文件夹结构并将各文件转换成相应的哈希表示存入数据库中以便后续查询操作。 ```sql CREATE TABLE IF NOT EXISTS images ( id INTEGER PRIMARY KEY AUTOINCREMENT, filepath TEXT UNIQUE NOT NULL, phash VARCHAR(64) NOT NULL ); INSERT INTO images (filepath, phash) VALUES (?, ?); SELECT * FROM images WHERE phash = ? ``` 上述 SQL 语句展示了创建用于存储图像及其对应哈希值得表格以及插入新记录和查找特定哈希值的方式。 #### 执行相似度检测 当接收到新的上传请求时,先对该目标执行同样的哈希运算流程;之后再依据所得结果同现有库内条目逐一比对差异大小——一般情况下汉明距离越小则说明两张照片间存在更高概率属于同一个源实体。 ```python def hamming_distance(hash1, hash2): diff = int(hash1, 16) ^ int(hash2, 16) return bin(diff).count('1') threshold = 5 # 可根据实际情况调整阈值 if hamming_distance(new_image_hash, existing_image_hash) <= threshold: print("Duplicate found!") else: print("Unique image.") ``` 这里定义了一个简单的辅助方法 `hamming_distance` 来衡量两个二进制串之间不同的位数,并以此判断两者的接近程度。如果两者间的差距小于设定好的界限,则认为它们可能是相同的原始素材的不同版本。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值