SOD(Salient Object Detection)
文章平均质量分 94
m_buddy
大表哥,还有大招吗... PS:本人所有文章均免费公开,任何收费条目请咨询平台
展开
-
《CTDNet:Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection》论文笔记
参考代码:CTDNet1. 概述导读:这是一篇关于显著性目标检测的文章,文章对影响显著性目标检测的网络各个部分进行探究,也就是将需要在一张图像中获取的信息划分为3个部分:语义上下文信息、像素空间信息、显著性目标边界信息,对应的特征图的层级也是由高到低。在这篇文章中比较清晰明了总结出了影响显著性目标检测性能的几个因素,因而以此为基础针对性设计网络结构,使得整体网络展现除了较高的运算效率(排除一些冗余部分),基于ResNet-18的网络能在1080 Ti GPU上跑到180FPS,大一些基于ResNet-原创 2021-11-14 19:27:15 · 3531 阅读 · 0 评论 -
《UC-Net:Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders》论文笔记
参考代码:UC-Net1. 概述导读:这篇文章研究的是RGB-D数据的显著性目标检测问题,其中的D代表的是深度图,可以通过如Kinect之类的深度传感器/深度估计网络等得到。再之前RGB-D显著性目标检测算法中一般将显著性目标当成为决策性的像素点估计问题,因而对于每个输入的样本数据都只会生成一个固定的显著性目标检测结果。其实要是对于显著性目标的结果具有较为明确的判断准则,那么这样的方式本身也没有什么问题。但是关键却是在显著性目标的标注问题上,不同人对同一幅图的显著性目标确定可能会存在差异,这就导致了使原创 2021-02-07 20:23:43 · 2062 阅读 · 1 评论 -
《BASNet:Boundary-Aware Salient Object Detection》论文笔记
参考代码:BASNet1. 概述导读:文章研究的问题是显著性目标检测,但相比于文章之前的一些算法更加关注目标的边缘区域,从而得到更好的显著性目标(分割)结果。对此文章在一个编解码组成的U型网络结构上预测得到显著性目标结果,之后在此基础上添加了一个显著性目标优化模块去更近一步优化分割结果,从而得到更加精细化的边缘呈现。除了网络上的改进之外,文章还提出了hybrid loss,其实是二值交叉熵(BCE)/结构相似度(Structural Similarity,SSIM)/IoU损失三者的结合,这三个损失分原创 2021-01-03 10:50:35 · 853 阅读 · 0 评论 -
《U^2-Net:Going Deeper with Nested U-Structure for Salient Object Detection》论文笔记
参考代码:U-2-Net1. 概述导读:这篇文章针对图片显著性目标检测(分割或许更为妥当)提出一种新的网络结构U^2-Net,该网络结构从整体上看由两层的U型结构组成,即是由U型的子模块(ReSidual U-blocks,RSU-L)构建一个更大的U型网络。文章指出这样做可以带来两点好处:1)可以极大提升网络在不同scale上获取上下文信息的能力,这是靠网络混合不同特征图尺寸下感受野得到的;2)由于在RSU中引入了池化操作因而可以加深网络,而不会带来巨大的计算开销。此外,文章还从具体任务出发提出不需原创 2021-02-05 00:37:46 · 589 阅读 · 0 评论