卡尔曼滤波器是一种使用状态估计来合并传感器测量和系统模型预测的数学方法。它由两个主要步骤组成:预测和校正。
卡尔曼滤波器的模型可以表示为下面的方程:
预测步骤:
-
状态预测:
x̂ₖ⁻ = Fₖ₋₁ₓₖ₋₁ + Bₖ₋₁uₖ₋₁
其中,x̂ₖ⁻ 是状态在时间步 k 的先验估计,Fₖ₋₁ 是状态转移矩阵,xₖ₋₁ 是在时间步 k-1 的后验状态估计,Bₖ₋₁ 是控制输入矩阵,uₖ₋₁ 是控制输入向量。 -
协方差预测:
Pₖ⁻ = Fₖ₋₁Pₖ₋₁Fₖ₋₁ᵀ + Qₖ₋₁
其中,Pₖ⁻ 是状态估计协方差矩阵,Qₖ₋₁ 是过程噪声协方差矩阵。
校正步骤:
-
计算卡尔曼增益:
Kₖ = Pₖ⁻Hₖᵀ(HₖPₖ⁻Hₖᵀ + Rₖ)⁻¹
其中,Kₖ 是卡尔曼增益,Hₖ 是观测矩阵,Rₖ 是观测噪声协方差矩阵。 -
更新状态估计:
x̂ₖ = x̂ₖ⁻ + Kₖ(yₖ - Hₖx̂ₖ⁻)
其中,x̂ₖ 是状态在时间步 k 的后验估计,yₖ 是观测向量。 -
更新协方差矩阵:
Pₖ = (I - KₖHₖ)Pₖ⁻
其中,I 是单位矩阵。
上述方程中,Fₖ₋₁、Bₖ₋₁、Hₖ 是矩阵,uₖ₋₁、yₖ 是向量。Pₖ⁻、Pₖ、Qₖ₋₁、Rₖ 是协方差矩阵。
这个模型描述了卡尔曼滤波器在预测和校正步骤中如何进行状态估计和协方差更新。需要注意的是,实际应用中需要根据具体问题定义和初始化这些矩阵和向量。
卡尔曼滤波器适用于连续时间的线性动态系统,但也可以通过一些扩展应用于非线性系统。