算法导论 3.1-1 关于θ记号

假设f(n)和g(n)都是渐近非负函数。使用θ记号的基本定义来证明max(f(n), g(n)) = θ(f(n)+g(n))。

要解决这个问题,我们先来回顾一下θ函数的形式化定义:

θ(g(n)) = {f(n): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geqn_{0},有0\leqc_{1}g(n)\leqf(n)\leqc_{2}g(n)} 。

将本题目中的函数代入到定义中,则我们要求证的定义是:

θ(f(n)+g(n)) = {max(f(n), g(n)): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geqn_{0},有0\leqc_{1}(f(n)+g(n))\leqmax(f(n), g(n))\leqc_{2}(f(n)+g(n))} 。

我们一步步来证明。

第一步,我们先证明 0\leqc_{1}(f(n)+g(n))的部分,只要存在条件c_{1}\geq0,n_{0}的值可以不限制,由于已知f(n)和g(n)都是渐近非负函数,所以可以推出0\leqc_{1}(f(n)+g(n)) ,得证。

第二步,我们在第一步的条件限制下,即存在正常量c_{1},且c_{1}\geq0,n_{0}的值可以不限制,进一步证明 c_{1}(f(n)+g(n))\leqmax(f(n), g(n))。

我们取c_{1}=0.5,则该式子变成 0.5(f(n)+g(n))\leqmax(f(n), g(n)) 。要证明该不等式成立,f(n)好g(n)存在且仅存在以下三种情况:

1. f(n)=g(n),则0.5(f(n)+g(n)) = g(n),max(f(n), g(n)) = g(n),可得 0.5(f(n)+g(n)) = max(f(n), g(n)) ,不等式成立。

2. f(n)<g(n),则0.5(f(n)+g(n)) < 0.5(g(n)+g(n)) = g(n),可得0.5(f(n)+g(n))<g(n),而max(f(n), g(n)) = g(n),由此可得0.5(f(n)+g(n)) < max(f(n), g(n)),不等式成立。

3. f(n)>g(n),则0.5(f(n)+g(n)) < 0.5(f(n)+f(n)) = f(n),可得0.5(f(n)+g(n))<f(n),而max(f(n), g(n)) = f(n),由此可得0.5(f(n)+g(n)) < max(f(n), g(n)),不等式成立。

第三步,验证存在正常量c_{2}n_{0}的值可以不限制,证明max(f(n), g(n))\leqc_{2}(f(n)+g(n))。

我们取c_{2}=1,于是c_{2}(f(n)+g(n))=f(n)+g(n),由于f(n)和g(n)都是渐近非负函数,即f(n)\geq0且g(n)\geq0,所以f(n)+g(n)\geqf(n)且f(n)+g(n)\geqg(n),由此可得f(n)+g(n)\geqmax(f(n), g(n)),则max(f(n), g(n))\leqc_{2}(f(n)+g(n))成立,故不等式得证。

 

综合以上情况,我们证明了θ(f(n)+g(n)) = {max(f(n), g(n)): 存在正常量c_{1}c_{2}n_{0},使得对所有n\geqn_{0},有0\leqc_{1}(f(n)+g(n))\leqmax(f(n), g(n))\leqc_{2}(f(n)+g(n))} 。

题目解决。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值