算法导论 3-1 麻烦的多项式渐近

(多项式的渐近行为)假设{\color{Red} p(n)=\sum_{i=0}^{d}a_{i}n^{i}}是一个关于n的d次多项式,其中{\color{Red} a_{d}>0},k是一个常量。使用渐近记号的定义来证明下面的性质。

a. 若{\color{Red} k\geq d},则{\color{Red} p(n)=O(n^{k})}

b. 若{\color{Red} k\leq d},则{\color{Red} p(n)=\Omega (n^{k})}

c. 若{\color{Red} k=d},则{\color{Red} p(n)=\Theta (n^{k})}

d. 若{\color{Red} k>d},则{\color{Red} p(n)=o(n^{k})}

e. 若{\color{Red} k<d},则{\color{Red} p(n)=\omega (n^{k})}

解答:

a. 根据O的形式化定义,有:

O(g(n))=f(n): 存在正常量cn_{0},使得对所有n\geq n_{0},有0\leq f(n)\leq cg(n) }。

套用到a中,则g(n)=n^{k}f(n)=p(n)。于是有

O(n^{k})= { p(n)=\sum_{i=0}^{d}a_{i}n^{i}: 存在正常量cn_{0},使得对所有n\geq n_{0},有0\leq p(n)\leq cn^{k} }。

我们取b等于a_{0},a_{1}...a_{d}中的最大绝对值,当c=bd,且n\geq 0时,有cg(n)=\sum_{i=0}^{d}bn^{k},由于k\geq d,并且b是a_{0},a_{1}...a_{d}中的最大绝对值,所以对于\sum_{i=0}^{d}bn^{k}中的每一个bn^{k}\geq \sum_{i=0}^{d}a_{i}n^{i}中的任何一个a_{i}n^{i},因此对于p(n),存在正常量cn_{0},使得对所有n\geq n_{0},有0\leq p(n)\leq cn^{k},故a得证。

b. 根据\Omega的形式化定义,有:

\Omega (g(n))=f(n): 存在正常量cn_{0},使得对所有n\geq n_{0},有0\leq cg(n)\leq f(n) }

套用到b中,则g(n)=n^{k}f(n)=p(n)。于是有

\Omega(n^{k})= { p(n)=\sum_{i=0}^{d}a_{i}n^{i}: 存在正常量cn_{0},使得对所有n\geq n_{0},有0\leq cn^{k}\leq p(n) }。

取正常量c0<c<a_{d},计算p(n)-cg(n),可得

p(n)-cg(n)=\sum_{i=0}^{d}a_{i}n^{i}-cn^{k} =\sum_{i=0}^{d-1}a_{i}n^{i}+a_{d}n^{d}-cn^{k}

已知k\leq d,因此可得

p(n)-cg(n)\geq\sum_{i=0}^{d-1}a_{i}n^{i}+a_{d}n^{d}-cn^{d}=\sum_{i=0}^{d-1}a_{i}n^{i}+(a_{d}-c)n^{d}=n^{d-1}\cdot (\sum_{i=0}^{d-1}a_{d}\cdot n^{i-(d-1)}+(a_{d}-c)n)

对于式子n^{d-1}\cdot (\sum_{i=0}^{d-1}a_{d}\cdot n^{i-(d-1)}+(a_{d}-c)n)中,由于i-(d-1)\leq 0,故n^{i-(d-1)}\leq 1,又因为n^{d-1}\geq 0

n\geq (\left | \sum_{i=0}^{d-1}a_{d} \right |)/(a_{d}-c)时,由于n^{i-(d-1)}\leq 1,且c< a_{d}, 于是有n\geq (\left | \sum_{i=0}^{d-1}a_{d}n^{i-(d-1)} \right |)/(a_{d}-c),因此可得

n^{d-1}\cdot (\sum_{i=0}^{d-1}a_{d}\cdot n^{i-(d-1)}+(a_{d}-c)n)\geq 0

于是可以得出,取c< a_{d}n\geq (\left | \sum_{i=0}^{d-1}a_{d} \right |)/(a_{d}-c),则有p(n)-cg(n)\geq\sum_{i=0}^{d-1}a_{i}n^{i}+a_{d}n^{d}-cn^{d}\geq 0,于是有

0\leq cn^{k}\leq p(n) 。b证明成立。

c. 当k=d时,根据a和b的证明我们有p(n)=O(n^{k})p(n)=\Omega (n^{k}),于是有p(n)=\Theta (n^{k})

 

d和e证明过程和a、b相似,在此不再赘述。

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值