算法导论 练习题 3.1-1

由题意,设f(n)+g(n)=θ(h(n))

则存在常数c1、c2、n0,使得n>=n0时,

0<=c1*h(n)<=f(n)+g(n)<=c2*h(n)

不失一般性,设max(f(n),g(n))=f(n),则n>=n0时,

1、f(n)<=f(n)+g(n)<=c2*h(n)

2、2f(n)>=f(n)+g(n)>=c1*h(n)

f(n)>=1/2*c1*h(n)

设c3=1/2*c1,则

0<=c3*h(n)<=f(n)<=c2*h(n)

所以,max(f(n),g(n))=θ(h(n))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值