由题意,设f(n)+g(n)=θ(h(n))
则存在常数c1、c2、n0,使得n>=n0时,
0<=c1*h(n)<=f(n)+g(n)<=c2*h(n)
不失一般性,设max(f(n),g(n))=f(n),则n>=n0时,
1、f(n)<=f(n)+g(n)<=c2*h(n)
2、2f(n)>=f(n)+g(n)>=c1*h(n)
f(n)>=1/2*c1*h(n)
设c3=1/2*c1,则
0<=c3*h(n)<=f(n)<=c2*h(n)
所以,max(f(n),g(n))=θ(h(n))