swun 1429&hdu 4320 进制转化(大牛&小牛代码)

描述

最近小胖对小数的进制转换非常感兴趣。

并且研究了整整一周。

小胖发现,有些进制的小数是无法完全转化成另一进制的小数。

比如 十进制的0.1 转化成 三进制 。

现在,小胖要来考验你们了。

输入

第一行输入一个整数T,代表有T组测试数据。(T<=20)

对于每组测试数据,有两个整数A、B。(1<A,B<=10^12)

输出

对于每组测试数据,输出样式请参照样例输出。

如果A进制的小数能够完全转化成B进制的小数,请输出"YES",否则输出"NO"。

样例输入

3
5 5
2 3
1000 2000

样例输出

Case #1: YES
Case #2: NO
Case #3: YES

//题目描述来自swun。和hdu约有不同,但结果一样!!

***************************************************************************************************************************************************************************************

swun题目链接:http://218.194.91.48/acmhome/problemdetail.do?&method=showdetail&id=1429

 hdu题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4320

比赛时五分钟被CYY大牛秒掉,之后五个小时没人搞出来,囧~~此小胖真的搞死苊们了!赛后听ZFQ学姐讲解才AC了!

题目要求A进制的小数能够完全转换成B进制的小数,小数后边会出现A的-1次方,-2次方(转换为十进制)…B也是同样!当A的所有因数都在B中存在,即能够约分把A的因数全部约掉,这样A进制就能完全转换为B进制了!(PS:其实前面没有太懂,只是后面听见ZFQ学姐说A中因数在B中完全存在才AC的!如果ZFQ学姐看见此页面,求补充!!)

 

代码:

 

#include<cstdio>
#include<cstring>
#define Maxn 3300
#define Inf 999999

typedef __int64 LL;
LL ay[Maxn];//A的因子 
LL by[Maxn];//B的因子 
LL prime[Maxn];//素数 
LL val[30010];//3W内的素数 
LL Init(){//预处理 :素数筛选法 
	LL i,j,tot=0;
	for(i=2;i<=30000;i++){
		if(val[i]) continue;
		prime[tot++]=i;
		for(j=i+i;j<=30000;j+=i)
			val[j]=1;
	}
	return tot;
}
int main(){
	LL t,a,b,i,j,s;
	LL k=Init(),cnta,cntb;
	scanf("%I64d",&t);
	for(s=1;s<=t;s++){
		scanf("%I64d%I64d",&a,&b);
		cnta=cntb=0;
		for(i=0;i<k&&(a>prime[i]||b>prime[i]);i++){//此循环是找出a和b的因数 
			if(!(a%prime[i])&&a>prime[i]){
				ay[cnta++]=prime[i];
				while(!(a%prime[i])) a/=prime[i];
			}
			if(!(b%prime[i])&&b>prime[i]){
				by[cntb++]=prime[i];
				while(!(b%prime[i])) b/=prime[i];
			}
		}
		if(a>1) ay[cnta++]=a;//如果a是大素数的时候不为1(没有因数) 
		if(b>1) by[cntb++]=b;
		bool flag;//节约时间所用 
		for(i=0;i<cnta;i++){
			flag=true;
			for(j=0;j<cntb;j++){
				if(ay[i]==by[j]){
					flag=false;
					break;
				}
			}
			if(flag) break;
		}
		printf("Case #%I64d: ",s);
		if(i==cnta) puts("YES");
		else puts("NO");
	}
	return 0;
}


感觉像暴力,时间长了点。

下面献上大牛diannaok的代码,

博客链接:http://blog.csdn.net/diannaok/article/details/7815545

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>

using namespace std;

long long a,b,c;

long long gcd(long long x,long long y){
	if(y==0)
		return x;
	return gcd(y,x%y);
}

int main(){
	int t,tt;
	cin>>t;
	for(tt=1;tt<=t;tt++){
		cin>>a>>b;
		cout<<"Case #"<<tt<<": ";
		c=gcd(a,b);
		while(c>1){
			a/=c;
			c=gcd(a,b);
		}
		if(a==1) cout<<"YES"<<endl;
		else cout<<"NO"<<endl;
	}
	return 0;
}

- -!!这代码, 膜拜膜拜!!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值