描述
最近小胖对小数的进制转换非常感兴趣。
并且研究了整整一周。
小胖发现,有些进制的小数是无法完全转化成另一进制的小数。
比如 十进制的0.1 转化成 三进制 。
现在,小胖要来考验你们了。
输入
第一行输入一个整数T,代表有T组测试数据。(T<=20)
对于每组测试数据,有两个整数A、B。(1<A,B<=10^12)
输出
对于每组测试数据,输出样式请参照样例输出。
如果A进制的小数能够完全转化成B进制的小数,请输出"YES",否则输出"NO"。
样例输入
3
5 5
2 3
1000 2000
样例输出
Case #1: YES
Case #2: NO
Case #3: YES
//题目描述来自swun。和hdu约有不同,但结果一样!!
***************************************************************************************************************************************************************************************
swun题目链接:http://218.194.91.48/acmhome/problemdetail.do?&method=showdetail&id=1429
hdu题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4320
比赛时五分钟被CYY大牛秒掉,之后五个小时没人搞出来,囧~~此小胖真的搞死苊们了!赛后听ZFQ学姐讲解才AC了!
题目要求A进制的小数能够完全转换成B进制的小数,小数后边会出现A的-1次方,-2次方(转换为十进制)…B也是同样!当A的所有因数都在B中存在,即能够约分把A的因数全部约掉,这样A进制就能完全转换为B进制了!(PS:其实前面没有太懂,只是后面听见ZFQ学姐说A中因数在B中完全存在才AC的!如果ZFQ学姐看见此页面,求补充!!)
代码:
#include<cstdio>
#include<cstring>
#define Maxn 3300
#define Inf 999999
typedef __int64 LL;
LL ay[Maxn];//A的因子
LL by[Maxn];//B的因子
LL prime[Maxn];//素数
LL val[30010];//3W内的素数
LL Init(){//预处理 :素数筛选法
LL i,j,tot=0;
for(i=2;i<=30000;i++){
if(val[i]) continue;
prime[tot++]=i;
for(j=i+i;j<=30000;j+=i)
val[j]=1;
}
return tot;
}
int main(){
LL t,a,b,i,j,s;
LL k=Init(),cnta,cntb;
scanf("%I64d",&t);
for(s=1;s<=t;s++){
scanf("%I64d%I64d",&a,&b);
cnta=cntb=0;
for(i=0;i<k&&(a>prime[i]||b>prime[i]);i++){//此循环是找出a和b的因数
if(!(a%prime[i])&&a>prime[i]){
ay[cnta++]=prime[i];
while(!(a%prime[i])) a/=prime[i];
}
if(!(b%prime[i])&&b>prime[i]){
by[cntb++]=prime[i];
while(!(b%prime[i])) b/=prime[i];
}
}
if(a>1) ay[cnta++]=a;//如果a是大素数的时候不为1(没有因数)
if(b>1) by[cntb++]=b;
bool flag;//节约时间所用
for(i=0;i<cnta;i++){
flag=true;
for(j=0;j<cntb;j++){
if(ay[i]==by[j]){
flag=false;
break;
}
}
if(flag) break;
}
printf("Case #%I64d: ",s);
if(i==cnta) puts("YES");
else puts("NO");
}
return 0;
}
感觉像暴力,时间长了点。
下面献上大牛diannaok的代码,
博客链接:http://blog.csdn.net/diannaok/article/details/7815545
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
long long a,b,c;
long long gcd(long long x,long long y){
if(y==0)
return x;
return gcd(y,x%y);
}
int main(){
int t,tt;
cin>>t;
for(tt=1;tt<=t;tt++){
cin>>a>>b;
cout<<"Case #"<<tt<<": ";
c=gcd(a,b);
while(c>1){
a/=c;
c=gcd(a,b);
}
if(a==1) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}
- -!!这代码, 膜拜膜拜!!