二刷代码随想录算法训练营第二十九天 | 491.递增子序列、46.全排列、47.全排列 II

目录

一、491. 递增子序列

二、46. 全排列

 二、47. 全排列 II


一、491. 递增子序列

题目链接:力扣

文章讲解:代码随想录

视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列

题目:

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

代码:

class Solution {
public:
    void dfs(vector<vector<int>> &ans, vector<int> path, vector<int>& nums, int begin, int numb){
        if(path.size() >= 2) ans.push_back(path);
        int used[201] = {0};
        for(int i = begin; i < nums.size(); i++){
            if((numb == 0 || nums[i] >= path[numb-1]) && (used[nums[i]+100] == 0)){
                path.push_back(nums[i]);
                used[nums[i]+100]++;
                dfs(ans, path, nums, i+1, numb+1);
                path.pop_back();
            } 
        }
    }
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        vector<vector<int>> ans;
        vector<int> path;
        dfs(ans, path, nums, 0, 0);
        return ans;
    }
};

时间复杂度: O(2^n*n)                                                  空间复杂度O(n)

⏲:8:11

总结:类子集问题,收集全结点,难点在于去重的逻辑:树层去重(用used进行层级的去重)。

        为什么不需要排序:题目递增非递减已限制数组顺序。

二、46. 全排列

题目链接:力扣

文章讲解:代码随想录

视频讲解:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列

题目:给定一个不含重复数字的数组 nums,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

代码:

class Solution {
public:
    void dfs(vector<vector<int>> &ans, vector<int> &nums, vector<int> path, vector<int> used){
        if (path.size() == nums.size()) {
            ans.push_back(path);
            return;
        }
        for(int i = 0; i < nums.size(); i++){
            if (!used[i]){
                path.push_back(nums[i]);
                used[i] = 1;
                dfs(ans, nums, path, used);
                used[i] = 0;
                path.pop_back();
            }
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> ans;
        vector<int> path;
        vector<int> used(nums.size(), 0);
        dfs(ans, nums, path, used);
        return ans;
    }
};

通过动态维护数组来省去标记数组:

class Solution {
public:
    void backtrack(vector<vector<int>>& ans, vector<int>& out, int l, int r){
        if(l == r){
            ans.emplace_back(out);
            return ;
        }
        for(int i = l; i<r;i++){
            swap(out[i], out[l]);
            backtrack(ans, out, l+1, r);
            swap(out[i], out[l]);
        }
    }

    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> ans;
        backtrack(ans, nums, 0, nums.size());
        return ans;
    }
};

时间复杂度: O(n*n!)                                                  空间复杂度O(n)

⏲:4:51

总结:排列 1.每层循环从0开始。2.利用记录(used)树枝去重。

 二、47. 全排列 II

题目链接:力扣

文章讲解:代码随想录

视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II

题目:给定一个可包含重复数字的序列 nums,按任意顺序 返回所有不重复的全排列。

代码:
class Solution {
public:
    void backtracking(vector<vector<int>> &ans, vector<int> &path, vector<int> &nums, vector<bool> &used)
    {
        if (path.size() == nums.size())
        {
            ans.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++)
        {
            if (used[i] || (i>0 && nums[i] == nums[i-1] && !used[i-1]/*如果此处改为used[i-1]则为树枝去重*/))
                continue;
            path.push_back(nums[i]);
            used[i] = 1;
            backtracking(ans, path, nums, used);
            path.pop_back();
            used[i] = 0;
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<vector<int>> ans;
        vector<int> path;
        sort(nums.begin(), nums.end());
        vector<bool> used(nums.size(), 0);
        backtracking(ans, path, nums, used);
        return ans;
    }
};

时间复杂度: O(n*n!)                                                空间复杂度O(n)

⏲:6:27

总结:1.难点:去重 排序+后与前比较相等。2.此题树层去重与树枝去重皆可,但树层去重效率更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值