早点关注我,精彩不迷路!
在前面的文章中,我们从最基本的Gilbreath Principle数学原理出发,介绍了众多相关魔术,相关内容请戳:
Gilbreath原理中的数学与魔术(五)——Ultimate Gilbreath原理初步应用魔术《Eric心电感应》等
Gilbreath原理中的数学与魔术(四)——Gilbreath First Principle进阶应用魔术《红黑匹配的赌博》等
Gilbreath原理中的数学与魔术(三)——Gilbreath First Principle魔术应用初探《红黑洗牌分离》
Gilbreath原理中的数学与魔术(二)——Ultimate Gilbreath 原理 & Mandelbrot 集合
Gilbreath原理中的数学与魔术(一)——Gilbreath Shuffle & First Principle
上一篇的应用多少还是有点周期的影子的,但我们早就说过,Ultimate Gilbreath Principle是脱离序列原本的周期性成立和应用的,有时非周期的情况下才因为其自由度高而能发挥它的真正威力。今天这个例子就是个典型,希望你能有所收获。
Gilbreath 10 card divination
上视频。
视频1 Gilbreath 10 card divination
Card divination是一个很流行的扑克牌魔术效果,大体指的是猜出若干张观众通过各种方法选出的牌的花色点数,自然是张数越多,观众预先越洗乱牌的效果越好,于是在Roberto Giobbi的讲座中就仅仅用了个分叠洗牌对应叠的子集不变这样的特性就完成了效果,原理很简单,重点则在表演。但是这个魔术破绽不小,如果能让观众更自由地洗牌就好了,我们看看Gilbreath能否做到。
在一般的 Ultimate Gilbreath Principle的应用中,往往都是把这个洗牌方式带来的规律和牌叠本身存在的一定范围的周期性结合起来,因为这样才可以比较好地应用顶部若干张的集合源于原序列的连续若干张,进而组成一个周期,是个常量的性质。
但是,Gilbreath原理从来就没有说过必须和周期性扯上关系,只是联合在一起最好用。那没有周期性的加成了,洗完一次Gilbreath Shuffle以后,根据Ultimate Gilbreath Principle第4条,顶部n张确实是原牌叠一段连续排列重排而成的。而对于给定的切牌位置和省略了Count过程的洗牌来说,那就是两个前缀子串组成的。所以假设固定n的话,这n张牌的集合可能性仅有左边长为0, 1, ......, n的前缀子串,右边对应n, n - 1, ......, 0的前缀子串,共(n + 1)种可能。这似乎并无法确定这些牌是什么,除非你耍流氓,又把扑克牌用全周期组成,但是那也顶多是点数的周期,花色也猜不了啊!不过,其实这里的不确定性,也只剩下左边的张数k这一个参数,右边自然是n - k张。然后我们假设依据原来的魔术效果,还是做n = 10张的divinadivination。再仔细分析下Gilbreath Shuffle的结构发现,有两个点可以帮助我们:
1. 左边的张数的(n + 1)种情况对应的左侧序列的起点分别为无以及1~n,换句话说,我可以设计好这n张牌的序,通过判定出现的索引最大的序是哪张来判断左边进入了多少张,也可以设计左侧牌的二元集合特性,通过数最后这些排他特性的张数,确定具体的k值。这里两个方法正是通过尾部元素索引判断序列长度(尾部又因为序列有序性转化为求最值)以及直接通过特征计集合大小计算序列长度的两个一般思路。但是,前一个方案显然不太可行,我们全程无法知道牌叠中任何一张牌的花色点数,它得要检索整个牌叠集合才能求最值。但是特性张数这件事还是有一定办法的,比如用奇偶性,红黑颜色,是否大于等于7,是否花牌都可以。让观众以魔术步骤的角度去完成这件事,但是我们暗中可以数到张数信息,进而确定参数k;
2. 在正常的一次洗牌中,n = 10的情况下,k的取值很难取到0,1,2,因为k <= 2等价于左侧的第3张得至少插入到右侧的第10 - 2 = 8张以后的位置,这会是一个极其不均匀的洗牌结果,如果不是太离谱,都不太可能出现。或者即使出现了,一眼也能看出,这个第3张被洗到了太靠后的位置,重来就好了。(注意这时候让观众洗牌不能全插入,否则拿不出来了,如果是lay man,这种情况发生概率也不低,所以还是要做好准备)
因此,相当于对于前Gilbreath shuffle后的10张而言,大概率k >= 3,即左侧前3张大概率在最后的牌叠中,根据对称性,右侧前3张也会在。因此这就解决了10张集合内的6张牌了,那其实只需要确定的就是k从3,4,5,6,7中选的哪个结果了。根据1的分析,我们通过一个长度为4的已知序列,比如一小段Si Stebbins序列,又得要求有共同特性,比如mod 3相等之类的;还是改成花色+2的Si Stebbins序列,这样同色,又方便记忆,同时其排他特性就可以用颜色这个更直观地可以让观众来完成的事来区分了。
根据对称性,右侧也是一个Si Stebbins花色+2的序列,换一个颜色起点的4张,中间再补一段6张的序列,比如方便记忆的142857的跑马灯数循环节作为数字,再配合递增花色即可。能这么做还恰好避开了所有可能重复点数和花色的牌,无它,都是一点点试出来的。
当然,和Giobbi那里一样,我们并不知道这10张牌的具体牌序,我们也只预测出来了集合是什么,所以干脆洗乱它们,混淆视听,获得混乱度的收益。当然了,如果长着一颗对离散数学这些概念了然于胸的人,这些都没用。
到这里,我脑海里闪过了很多在一通洗牌,切牌等各种可控操作后的数学魔术效果,发现一个共同特点,那就是混乱是有,但是本身容许混乱度及其高的集合这个层面的事,还是可以保留不少常量,因此很多扑克牌数学魔术的原理,也是从这里出发的,比如《4 Kings 折纸》,CATO系列等魔术,包括今天这个魔术,都可以归结到这个点上。
这个作品是很不错地应用了近似计算,Ultimate Gilbreath Principle基本性质,以及序列运算中,数量和索引之间的关系,当然中间还有个二元性质构造集合的例子,集合无序性的应用,以及颇有数学文化意味的各种小序列的嵌入,浑然一体,是不可多得的好作品。
下期我们将继续介绍Ultimate Gilbreath Principle的魔术应用,视频先奉上,敬请期待。
视频2 20张的占卜
视频3 终极4Kings出现
我们是谁:
MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!
扫描二维码
关注更多精彩
Gilbreath原理中的数学与魔术(五)——Ultimate Gilbreath原理初步应用魔术《Eric心电感应》等
Si Stebbins Stack中的数学与魔术(十一)——《Woody on Stebbins》作品赏析
点击阅读原文,往期精彩不错过!