【阅读笔记】CLEGAN Towards Low-light Image Enhancement for UAVs via Self-Similarity Exploitation(2023TGRS)

当前难点:

①在遥感领域难以获取真实世界的低光/正常光图片对

②没有成对数据作监督

Motivation:

①通过自相似对比学习(SSCL)在一个名为CLEGAN的深度GAN框架内以完全无监督的方式最大化低光照和恢复图像之间的互信息。

②我们建议使用从输入本身提取的信息来正则化未配对的训练,而不是使用地面真值数据来监督学习。

③嵌入双照度感知模块(DIPM)来处理遥感图像中信息的内部递归性和整体照度分布的不均匀性。DIPM主要由两个协作模块组成:空间自适应光调节模块(SALAM)全局自适应光调节模块(GALAM)。具体而言,SALAM利用遥感图像中信息的内部递归性,将更大范围的上下文信息编码为局部特征,并进行适当的光估计。同时,GALAM增强了特征映射中最有价值的照明相关通道,以实现更好的光估计

网络结构:

①概述。

给定一个输入的弱光图像x,我们的目标是使用生成器G以无监督的方式从x映射到输出的正常光图像y。然后,我们使用Patch discriminator [43] D来确保翻译后的图像属于正确的域,从而提高了生成图像的质量。所采用的Patch鉴别器减少了网络的参数,并且比其他传统的鉴别器执行速度更快。对于鉴别器,我们从输出和真实的正光图像中随机提取裁剪后的补丁,然后判断它们是真实的(来自真实图像)还是假的(来自生成的图像),从而确保增强图像的所有局部补丁看起来都像真实的。在此过程中,我们利用自相似对比学习和对抗训练策略进行网络训练

      2 生成器的总体结构

双照明调整模块(DIPM)

包含SALAM和GALAM。SALAM捕获整个图像中像素之间的长期依赖关系,以增强特征表示并进行适当的光估计。GALAM探索特征通道之间的相互依赖关系,以捕获更多信息特征并增强最有价值的照明相关通道。SALAM和GALAM的最终目标是相同的,都是为了实现更好的光估计

空间自适应光照调整模块(SALAM

由于遥感图像中,类似的地面目标往往重复出现,可以利用这些板块具有相似外观、纹理、亮度的特性。但是卷积层的接受域仅限于局部,无法放眼全局。而相邻像素点的亮度变化大,故会导致相邻像素的亮度非常相似,导致不正确的亮度估计和不清晰的纹理。

据此提出非局部块【44】。将一个位置的响应作为所有位置特征的加权和来计算。

SALAM包含两个分支。非局部块提取的空间信息作为注意图进一步进行光估计。主分支便于细节的表示。主分支由堆叠的卷积层和Leaky ReLU激活函数组成,可以提取更高的特征。最后,我们将主分支的输出与来自注意分支的注意图相乘得到结果

这俩先进行点乘运算,计算自相似度。

两个子通道作自注意力,计算出权重,加入到第三个通道上。

全局自适应光照调整模块(GALAM

从低层视觉的角度来看,每个通道代表不同的全局信息,因此我们可以利用通道关注来强调特征图中最相关的通道。我们提出了一个全局自适应光调节模块(GALAM)来增强特征映射中最有价值的照明相关通道,并抑制不太有用的通道。

如图所示,GALAM由特征保持分支和光照校正分支组成。

与2021 TCSVT的一篇论文 Attention guided gloval local adversarial …非常像

③自相似性对比正则化分支(SSCRB

我们观察到,弱光图像L和正常光图像N除了亮度水平不同外,在视觉内容上是一致的。因此,我们的见解是从DL和DN中提取的特征具有某些共同的属性。我们认为,如果从不同域生成的一对具有低维特征的patch是相似的(称为“正”),那么它们在潜在空间中的嵌入距离也应该是低的,反之亦然

相同板块建模为正样本,不用板块建立为负样本,进行一个损失函数计算。…

具体来说:L和N,从哪里来?低光的是输入的源图像,N是增强后的源图像。正负样本从源图像中取。样本大小为4*3*16*16。计算欧氏距离,把前k个最大值作为负样本。

④损失函数

1、对抗损失adversial loss,采用最小二乘

2、身份保持损失identity preserving loss,采用L1距离

  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
强噪声的理想时频表示方法主要是为了在频域和时域上准确地表示出噪声信号。在处理强噪声信号时,我们希望减小噪声对信号的影响,从而更好地分析和提取信号的特征。 首先,为了处理强噪声信号,可以考虑使用适当的滤波方法。例如,我们可以使用带通滤波器来去除噪声信号中的不必要的低频和高频成分,从而保留信号的主要特征。此外,还可以采用自适应滤波器来根据噪声信号的特性自动调整滤波参数,以更好地去除噪声。 其次,为了获得理想的时频表示,可以考虑使用一些先进的时频分析方法,如短时傅里叶变换(STFT)、连续小波变换(CWT)或多尺度分析方法(如小波包变换)。这些方法可以将信号在时域和频域上进行局部化处理,从而更好地反映信号的瞬时特性和频谱特性。 另外,为了进一步减小噪声对时频表示的影响,可以考虑使用一些去噪技术。例如,小波阈值去噪是一种常用的方法,它可以根据信号的小波系数大小来判断是否为噪声,从而去除噪声成分。此外,还可以使用基于机器学习的方法来训练和应用噪声模型,从而更准确地估计和去除噪声。 综上所述,针对强噪声的理想时频表示方法可以包括滤波、时频分析和去噪等步骤。通过有效地组合这些方法,我们可以更准确地分析和提取信号的特征,从而更好地理解和利用强噪声信号。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值