【论文精读】Deep Color Consistent Network for Low-Light Image Enhancement 用于低光照图像增强的深度颜色一致网络

本文提出了一种新的低光照增强方法DCC-Net,通过保持颜色一致性来解决现有LLIE方法中的颜色偏差问题。DCC-Net采用分而治之策略,将图像解耦为灰度图和颜色直方图,利用G-Net、C-Net和R-Net进行协同处理,以及PyramidColorEmbedding模块优化颜色嵌入。实验结果表明,DCC-Net在多个数据集上表现出色,增强了图像的自然性和色彩丰富度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接:https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Deep_Color_Consistent_Network_for_Low-Light_Image_Enhancement_CVPR_2022_paper.pdf

代码链接:

GitHub - Ian0926/DCC-Net: Code for paper "Deep Color Consistent Network for Low Light-Image Enhancement"

目录

Abstract

1. Introduction

2. Related work

2.1. 传统方法

2.1.1. 基于HE的方法

2.1.2. 基于视网膜的方法

2.2. 基于深度学习的方法

2.2.1. 有监督

2.2.2. 无监督/半监督

3. Proposed Method

3.1. Network Structure

3.1.1. G-Net

3.1.2. C-Net

3.1.3. R-Net

3.2. Pyramid Color Embedding (PCE)

3.2.2. Color embedding

3.2.3. Pyramid structure

3.3. Objective Function

4. Experiments


Abstract

任务:

低光照增强(LLIE)任务如何refine光照并获得正常的自然光照图像

痛点:

目前的LLIE方法没有考虑将颜色信息合理的融入LLIE处理中(未考虑颜色一致性

增强图像和ground-truth存在色差

痛点解决方法:

提出DCC-Net来保留LLIE的颜色一致性

提出“分而治之”的协作策略(即灰度图and颜色直方图协作)来保存颜色信息并增强光照:

  • 将每个彩色图像解耦为两个部分:灰度图(gray)和颜色直方图(color histogram)
  • 灰度图:用于生成合理的结构和纹理
  • 颜色直方图:用于保持颜色一致性

提出金字塔颜色嵌入模块(PCE)

  • 作用:匹配颜色和内容特征,减少显色不一致现象,更好的将颜色信息嵌入LLIE过程中

实验:

在六个数据集上实验,DCC-Net增强图像更加自然、色彩丰富

1. Introduction

低光照增强:

  • 是一项refine 光照来获得自然常光图像的任务,旨在提高低光照环境下捕获地光图像的感知和视觉质量
  • 低光照图像:内容不清晰,低对比度,有噪声——>对人眼不友好and不利于多媒体计算/CV任务eg:人脸识别、目标检测、语义分割

传统的LLIE方法大致可以分为两类:

  • 基于直方图均衡化(HE)的方法
  • 基于视网膜(retinex-based)的方法
  • 相对简单,但不能回复颜色一致性和纹理细节

深度LLIE方法:

  • 构建:深度神经网络(DNN)+不同的模块
  • 优缺:性能比传统方法好很多,但会生成不一致的颜色,如图1所示
图1 我们的 DCC-Net 和其他深度 LLIE 方法在 PSNR/SSIM 指标方面的比较。我们清楚地看到,RetinexNet、ZeroDCE++、Kind++ 和 EnlightenGAN 的增强图像与地面实况图像之间存在较大的颜色差距。相比之下,我们的 DCC-Net 可以有效保留颜色一致性,增强后的图像更加自然、色彩丰富。

导致图片颜色不一致的原因:

  • 不同的架构:端到端的深度架构和基于视网膜的架构都聚焦于refine光照,无视了颜色一致性和自然性
  • 信息不匹配:颜色直方图描述了全局颜色信息,不包含任何空间信息。因此,无法找的与图像中内容适配的颜色信息

文章的主要贡献:

  • 提出一种新的策略——>保持LLIE的颜色一致性,提出一个DCC-Net——>减少增强图和ground-truth之间的色差。是第一个直接通过探索颜色一致性来增强光照的工作。
  • 提出解耦合策略(将彩色图像解耦合为灰度图and颜色直方图)——>既保持颜色一致性,又能增强光照。为DCC-Net设计三个子网络G-Net、C-Net、R-Net,如图2所示,G-Net——>恢复灰度图以提供丰富的结构和纹理信息C-Net——>学习颜色分布以助于保持颜色一致性R-Net——>混合灰度图和颜色信息以重建正常光图像。
  • 设计PCE——>解决颜色直方图缺少空间信息
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值