【论文精读】Deep Color Consistent Network for Low-Light Image Enhancement 用于低光照图像增强的深度颜色一致网络

论文链接:https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Deep_Color_Consistent_Network_for_Low-Light_Image_Enhancement_CVPR_2022_paper.pdf

代码链接:

GitHub - Ian0926/DCC-Net: Code for paper "Deep Color Consistent Network for Low Light-Image Enhancement"

目录

Abstract

1. Introduction

2. Related work

2.1. 传统方法

2.1.1. 基于HE的方法

2.1.2. 基于视网膜的方法

2.2. 基于深度学习的方法

2.2.1. 有监督

2.2.2. 无监督/半监督

3. Proposed Method

3.1. Network Structure

3.1.1. G-Net

3.1.2. C-Net

3.1.3. R-Net

3.2. Pyramid Color Embedding (PCE)

3.2.2. Color embedding

3.2.3. Pyramid structure

3.3. Objective Function

4. Experiments


Abstract

任务:

低光照增强(LLIE)任务如何refine光照并获得正常的自然光照图像

痛点:

目前的LLIE方法没有考虑将颜色信息合理的融入LLIE处理中(未考虑颜色一致性

增强图像和ground-truth存在色差

痛点解决方法:

提出DCC-Net来保留LLIE的颜色一致性

提出“分而治之”的协作策略(即灰度图and颜色直方图协作)来保存颜色信息并增强光照:

  • 将每个彩色图像解耦为两个部分:灰度图(gray)和颜色直方图(color histogram)
  • 灰度图:用于生成合理的结构和纹理
  • 颜色直方图:用于保持颜色一致性

提出金字塔颜色嵌入模块(PCE)

  • 作用:匹配颜色和内容特征,减少显色不一致现象,更好的将颜色信息嵌入LLIE过程中

实验:

在六个数据集上实验,DCC-Net增强图像更加自然、色彩丰富

1. Introduction

低光照增强:

  • 是一项refine 光照来获得自然常光图像的任务,旨在提高低光照环境下捕获地光图像的感知和视觉质量
  • 低光照图像:内容不清晰,低对比度,有噪声——>对人眼不友好and不利于多媒体计算/CV任务eg:人脸识别、目标检测、语义分割

传统的LLIE方法大致可以分为两类:

  • 基于直方图均衡化(HE)的方法
  • 基于视网膜(retinex-based)的方法
  • 相对简单,但不能回复颜色一致性和纹理细节

深度LLIE方法:

  • 构建:深度神经网络(DNN)+不同的模块
  • 优缺:性能比传统方法好很多,但会生成不一致的颜色,如图1所示
图1 我们的 DCC-Net 和其他深度 LLIE 方法在 PSNR/SSIM 指标方面的比较。我们清楚地看到,RetinexNet、ZeroDCE++、Kind++ 和 EnlightenGAN 的增强图像与地面实况图像之间存在较大的颜色差距。相比之下,我们的 DCC-Net 可以有效保留颜色一致性,增强后的图像更加自然、色彩丰富。

导致图片颜色不一致的原因:

  • 不同的架构:端到端的深度架构和基于视网膜的架构都聚焦于refine光照,无视了颜色一致性和自然性
  • 信息不匹配:颜色直方图描述了全局颜色信息,不包含任何空间信息。因此,无法找的与图像中内容适配的颜色信息

文章的主要贡献:

  • 提出一种新的策略——>保持LLIE的颜色一致性,提出一个DCC-Net——>减少增强图和ground-truth之间的色差。是第一个直接通过探索颜色一致性来增强光照的工作。
  • 提出解耦合策略(将彩色图像解耦合为灰度图and颜色直方图)——>既保持颜色一致性,又能增强光照。为DCC-Net设计三个子网络G-Net、C-Net、R-Net,如图2所示,G-Net——>恢复灰度图以提供丰富的结构和纹理信息C-Net——>学习颜色分布以助于保持颜色一致性R-Net——>混合灰度图和颜色信息以重建正常光图像。
  • 设计PCE——>解决颜色直方图缺少空间信息的问题。PCE由6个金字塔结构的颜色嵌入(CE)子模块构成。CE——>根据颜色和内容特征的亲和力来匹配它们,可以动态地合并颜色信息,进一步减少增强图像和ground-truth之间的色差。

2. Related work

2.1. 传统方法

2.1.1. 基于HE的方法

改变图像的动态范围来提高对比度

注重增强对比度而不直接细化照明,会由增强不足或过度增强的现象

2.1.2. 基于视网膜的方法

将图像分解为反射率和光照强度的像素级乘积,如式(1):

S:一张图片

R:相应的反射率

I:相应的光照强度

进一步处理反射率和光照强度,可得到增强结果。

该方法旨在估计光照强度,这是手工的并且依赖于大量的调参工作,最终结果常存在颜色不一致和噪声现象

2.2. 基于深度学习的方法

通常能超越传统方法。根据是否使用配对数据(即用一场景下的degraded图片和ground-truth图片)可分为3类:监督、无监督和半监督方法。

2.2.1. 有监督

所有的训练数据是配对的

没有解决颜色不一致的问题

可进一步分为基于视网膜的方法和端到端的方法

(1)基于视网膜的方法

用深度学习将图像合成反射率和照明度,例如:RetinexNet分为两步,第一步将图片分解长反射度和照明度,第二步调整照明图。基于KinD和KinD++的RetinexNet模型,包含分解网络、重建网络和调整网络。

(2)端到端的方法

不用分解图片,直接处理低光照图像,例如:LLNet使用深度自动编码器,基于CNN的深度LLIE模型。

2.2.2. 无监督/半监督

现实中很难获得成对的数据,无监督/半监督学习用来缓解此问题,例如:

  • Yang等人提出deep recursive band network,该方法使用成对的和不成对的低光/自然光照图像获取一个增强自然光图像线性带特征
  • Jiang等人提出一个无监督学习的方法,该方法用生成对抗网络(GAN)为主要框架
  • 还有很多zero-short方法,它们的输入只包含低光照图像

解决了无配对数据或只有部分配对数据的问题,但是增强质量非常有限

3. Proposed Method

DCC-Net有三个子网络(G-Net,C-Net,R-Net)和一个PCE模块。

图2 我们DCC-Net的整体框架。可以看出,共有三个子网:G-Net、C-Net和R-Net,其中G-Net旨在恢复内容信息丰富的灰度图像,C-Net侧重于学习颜色分布, R-Net结合灰度图像和颜色信息来恢复自然且颜色一致的正常光图像

3.1. Network Structure

3.1.1. G-Net

(1)作用

预测正常光图像的灰度图像

  • 包含丰富的结构信息and纹理信息
  • 无颜色信息

(2)公式

G_{pre}:预测出的灰度图像

S_{low}:输入的低光照图像

GNet:G-Net的变换

(3)G-Net

使用编码-解码pipeline,和U-Net相似

使用l_{1}损失来重建灰度图像,如式(3)所示

l_{g}是灰度图像重建损失

G_{high}是正常光照图像的灰度图

H和W分别是灰度图像G_{high}的长的和宽度

3.1.2. C-Net

(1)颜色直方图

  • 是一种颜色特征,被广泛用在图像检索系统中
  • 主要描述了不同颜色在整张图片中所占的比例,不考虑颜色的空间位置

C-Net计算RGB颜色空间的颜色直方图。该直方图是一个矩阵,大小为N×256,N=3对应三个颜色通道(R、G、B),256对应像素值的范围

(2)方法&作用

①为了颜色特征的学习,设计基于颜色直方图的C-Net,获取与自然光照图一致的颜色特征,如图2所示。

②使用编码-解码pipeline,将输入的低光照图像转化为预测的颜色直方图,公式如下:

C_{pre}:获取到的颜色直方图

CNet:C-Net的计算过程

③使用l_{1}损失来限制C-Net,损失函数公式如下:

l_{c}是颜色直方图重建损失

G_{high}是正常光照图像的颜色直方图

3.1.3. R-Net

(1)作用

混合通过G-Net和C-Net获得的灰度图和颜色直方图来协作地重建自然光照的图像。

(2)方法

①融合灰度图和颜色直方图获得自然光照图,公式如下:

S_{pre}:增强的图片

②为了重建像素水平的自然光照图像,使用颜色图像重建损失l_{r},公式如下:

N、H和W:分别是自然光照图像S_{high}的通道数量、高度和宽度。

③在结构层面,采用ssim损失作为约束,公式如下:

相似函数SSIM\left ( \cdot \right )如下:

x,y\in \mathbb{R}^{H\times W\times 3}:被测量出的两张图片

\mu _{x},\mu _{y}\in \mathbb{R}:两张图片的平均值

\sigma_{x},\sigma _{y}\in \mathbb{R}:两幅图像对应的方差

\sigma_{x},\sigma _{y}\in \mathbb{R}:两个常量参数,可以防止分母为0

l_{tv}:总变差损失也被用作正则化项,来保持增强图像的平滑度

3.2. Pyramid Color Embedding (PCE)

作用:将颜色信息动态的嵌入到R-Net中,如图3所示

PCE组成:PCE有金字塔结构的六个颜色嵌入模块(CE)

CE组成:主要是双亲和力矩阵(DMA),解决信息不匹配的问题

图3 金字塔颜色嵌入(PCE)和颜色嵌入(CE)模块的详细结构,其中表示逐元素乘法,⊕表示逐元素加法,⊗表示上采样操作。

3.2.1. Dual affinity matrix 

(1)作用:

解决信息错误匹配的问题,获取更好的颜色信息嵌入

(2)方法:

CE:可以根据颜色内容特征之间的亲和力动态的将颜色特征合并到R-Net

DAM:计算亲和力矩阵来匹配颜色和内容特征,进一步防止增强图像产生不一致的颜色

①DAM先计算每个位置的Manhattan距离和C与F之间的内积,公式如下:

C:颜色特征,大小为N×H×W

F:内容特征,大小为N×H×W

F\left ( x,y \right ),C\left ( x,y \right )\in \mathbb{R}^{N}:表示向量F和C的位置(x, y)

M,P\in \mathbb{R}^{N}:是Manhattan距离矩阵和内积矩阵

②计算双亲和矩阵,公式如下所示:

tanh\left ( \cdot \right ), sigmoid\left ( \cdot \right ):是tanh函数和sigmoid函数

M\left ( (x,y)) \right )\leq 0:每个位置(x, y)都满足该条件,因此sigmoid\left (M\right )\in \left [ 0, 0.5 \right ]

A:双亲和矩阵,A\in \left [ 0, 1 \right ]

3.2.2. Color embedding

CE:用来获取动态颜色嵌入,结构如图3所示

①计算A与C的主元素乘积,加权后的颜色特征与内容特征F相加得到颜色信息嵌入特征

E:R-Net解码器中使用的输出特征

②有一个上采样操作来改变C的分辨率,谭厚进一步输送到下一个CE做为原始颜色特征。

3.2.3. Pyramid structure

该结构将颜色特征嵌入六层中,该设计可以充分利用色彩信息,可以使颜色一致性更佳

PCE从浅到深各层得到的特征描述如下:

C_{i}, F_{i}, E_{i}分别是颜色特征、内容特征和输出特征

CE\left ( \cdot \right )是CE的变换

3.3. Objective Function

DCC-Net的目标函数如下所示:

\lambda _{g}, \lambda _{c}, \lambda _{r}, \lambda _{ssim}, \lambda _{tv}:是几个权衡参数

l_{g}, l_{c}:分别用来恢复灰度图像和颜色直方图

l_{r}, l_{ssim}:用于在像素和结构级别重建常光图像

l_{tv}:正则化项,用于防止过拟合并保持平滑度

4. Experiments

table1 LOL数据集上PSNR、SSIM、MAE、CSE和推理时间的评估结果,其中红色表示最好的性能,蓝色表示第二好的性能。
table2 在 DICM、LIME、MEF、NPE 和 VV 数据集上的 NIQE 评估结果,其中红色表示最好的性能,蓝色表示第二好的性能。
table3 我们的 DCC-Net 在 LOL 数据集上具有不同结构的 LLIE 结果,其中粗体表示最好

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值