代码链接:
目录
3.2. Pyramid Color Embedding (PCE)
Abstract
任务:
低光照增强(LLIE)任务如何refine光照并获得正常的自然光照图像
痛点:
目前的LLIE方法没有考虑将颜色信息合理的融入LLIE处理中(未考虑颜色一致性)
增强图像和ground-truth存在色差
痛点解决方法:
提出DCC-Net来保留LLIE的颜色一致性
提出“分而治之”的协作策略(即灰度图and颜色直方图协作)来保存颜色信息并增强光照:
- 将每个彩色图像解耦为两个部分:灰度图(gray)和颜色直方图(color histogram)
- 灰度图:用于生成合理的结构和纹理
- 颜色直方图:用于保持颜色一致性
提出金字塔颜色嵌入模块(PCE)
- 作用:匹配颜色和内容特征,减少显色不一致现象,更好的将颜色信息嵌入LLIE过程中
实验:
在六个数据集上实验,DCC-Net增强图像更加自然、色彩丰富
1. Introduction
低光照增强:
- 是一项refine 光照来获得自然常光图像的任务,旨在提高低光照环境下捕获地光图像的感知和视觉质量
- 低光照图像:内容不清晰,低对比度,有噪声——>对人眼不友好and不利于多媒体计算/CV任务eg:人脸识别、目标检测、语义分割。
传统的LLIE方法大致可以分为两类:
- 基于直方图均衡化(HE)的方法
- 基于视网膜(retinex-based)的方法
- 相对简单,但不能回复颜色一致性和纹理细节
深度LLIE方法:
- 构建:深度神经网络(DNN)+不同的模块
- 优缺:性能比传统方法好很多,但会生成不一致的颜色,如图1所示

导致图片颜色不一致的原因:
- 不同的架构:端到端的深度架构和基于视网膜的架构都聚焦于refine光照,无视了颜色一致性和自然性
- 信息不匹配:颜色直方图描述了全局颜色信息,不包含任何空间信息。因此,无法找的与图像中内容适配的颜色信息
文章的主要贡献:
- 提出一种新的策略——>保持LLIE的颜色一致性,提出一个DCC-Net——>减少增强图和ground-truth之间的色差。是第一个直接通过探索颜色一致性来增强光照的工作。
- 提出解耦合策略(将彩色图像解耦合为灰度图and颜色直方图)——>既保持颜色一致性,又能增强光照。为DCC-Net设计三个子网络G-Net、C-Net、R-Net,如图2所示,G-Net——>恢复灰度图以提供丰富的结构和纹理信息;C-Net——>学习颜色分布以助于保持颜色一致性;R-Net——>混合灰度图和颜色信息以重建正常光图像。
- 设计PCE——>解决颜色直方图缺少空间信息