销售利润最大化

本文介绍了一个关于在给定数轴上房屋销售的问题,通过处理买家的购买要约,使用贪婪算法确定如何选择和出售房屋以最大化收益。解决方案中,作者定义了状态转移方程,以求解每个房屋是否出售及对应的最优价格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

. - 力扣(LeetCode)

给你一个整数 n 表示数轴上的房屋数量,编号从 0 到 n - 1 。

另给你一个二维整数数组 offers ,其中 offers[i] = [starti, endi, goldi] 表示第 i 个买家想要以 goldi 枚金币的价格购买从 starti 到 endi 的所有房屋。

作为一名销售,你需要有策略地选择并销售房屋使自己的收入最大化。

返回你可以赚取的金币的最大数目。

注意 同一所房屋不能卖给不同的买家,并且允许保留一些房屋不进行出售。

示例 1:

输入:n = 5, offers = [[0,0,1],[0,2,2],[1,3,2]]
输出:3
解释:
有 5 所房屋,编号从 0 到 4 ,共有 3 个购买要约。
将位于 [0,0] 范围内的房屋以 1 金币的价格出售给第 1 位买家,并将位于 [1,3] 范围内的房屋以 2 金币的价格出售给第 3 位买家。
可以证明我们最多只能获得 3 枚金币。

示例 2:

输入:n = 5, offers = [[0,0,1],[0,2,10],[1,3,2]]
输出:10
解释:有 5 所房屋,编号从 0 到 4 ,共有 3 个购买要约。
将位于 [0,2] 范围内的房屋以 10 金币的价格出售给第 2 位买家。
可以证明我们最多只能获得 10 枚金币。

提示:

  • 1 <= n <= 105
  • 1 <= offers.length <= 105
  • offers[i].length == 3
  • 0 <= starti <= endi <= n - 1
  • 1 <= goldi <= 103

分析:首先这个题需要注意的是,end是0~n连续存在的,且同为end的售卖数组可能有多个

对于所有的offers,对于卖家售卖0~end的所有房屋最大利润为

如果end的房屋不售卖,则利润f[end+1]=f[end]

如果end的房屋售卖,则遍历所有end的售卖组合,利润f[end+1]=max(f[end+1], f[start] + gold)

class Solution {
public:
    int maximizeTheProfit(int n, vector<vector<int>>& offers) {
        vector<vector<std::pair<int, int>>> groups(n);
        for (const auto& offer : offers) {
            groups[offer[1]].emplace_back(offer[0], offer[2]);
        }
        vector<int> f(n + 1, 0);
        for (int end = 0; end < n; end++) {
            f[end + 1] = f[end];
            for (const auto& group : groups[end]) {
                auto start = group.first;
                auto gold = group.second;
                f[end + 1] = max(f[end + 1], f[start] + gold);
            }
        }
        return f[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值