使用openai-whisper实现语音转文字
1 安装依赖
1.1 Windows下安装ffmpeg
FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的完整解决方案。
# ffmpeg官网
https://ffmpeg.org/
# ffmpeg下载地址
https://ffmpeg.org/download.html
# 点击下载后会进入github,地址如下
https://github.com/BtbN/FFmpeg-Builds/releases
在官网上选择windows版本
推荐使用ffmpeg-n5.1.4-win64-gpl-5.1.zip
和 ffmpeg-n6.0.1-win64-gpl-6.0.zip
这两个版本,因为ffmpeg 5.1.4 和 ffmpeg 6.0.1版本是最新稳定版。
# Auto-Build 2023-11-30的地址
https://github.com/BtbN/FFmpeg-Builds/releases/tag/autobuild-2023-11-30-12-55
# ffmpeg-n5.1.4-win64-gpl-5.1.zip的地址
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2023-11-30-12-55/ffmpeg-n5.1.4-win64-gpl-5.1.zip
# ffmpeg-n6.0.1-win64-gpl-6.0.zip的地址
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2023-11-30-12-55/ffmpeg-n6.0.1-win64-gpl-6.0.zip
在GitHub上可以选择最新版本,选择ffmpeg-master-latest-win64-gpl.zip
;
⚠️ 如果python程序出现“FileNotFoundError: [WinError 2] 系统找不到指定的文件。”错误时,可能是ffmpeg版本的问题。
将ffmpeg-master-latest-win64-gpl.zip
解压到D盘,名字修改为ffmpeg
, 将目录 D:\ffmpeg\bin
添加到环境变量中。
在dos页面查看版本号中输入:ffmpeg.exe -version
,出现下面的信息表示安装成功。
1.2 安装openai-whispe
# whispe地址
https://github.com/openai/whisper
# 安装openai-whisper
pip install openai-whisper -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装pydub切割音频,防止音频太长
pip install pydub -i https://pypi.tuna.tsinghua.edu.cn/simple
下载语音,可以直接在浏览器中打开,再下载
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
1.3 其他相关项目
# faster-whisper基于CTranslate2重新优化了whisper,有效提升了whisper的性能
https://github.com/SYSTRAN/faster-whisper
# WhisperX融合faster-whisper提高性能、pyannote-audio区分信号和wav2vec 2.0自动语音识别预训练模型识别语音特征等,
# 实现单词级时间戳的自动语音识别
https://github.com/m-bain/whisperX
2 使用openai-whispe
2.1 工程目录
2.2 main.py
import whisper
model = whisper.load_model(name="tiny", download_root="./model")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(".//data//zh.wav")
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
# print the recognized text
print(result.text)
输出结果:
Detected language: zh
我認為跑步最重要的就是給我帶來了身體健康
2.3 简单使用
openai-whispe中的transcribe()方法,可以接收文件路径,也接收numpy的np.ndarray类型(音频流),可以使用librosa包对音频进行处理,librosa包是音频处理的库,主要功能有获取音频流(np.ndarray)、采样率、文件时常、波形图、频谱图等。
# librosa的简单使用,audio_np音频流(np.ndarray),freq音频采样率
audio_np, freq = librosa.load(audio_path)
openai-whispe中的transcribe()方法
import whisper
model = whisper.load_model(name="tiny", download_root="./model")
result = model.transcribe(".//data//zh.wav")
print(result["text"])