Whisper是一种令人激动的新型语言模型,采用了全新的语音识别方法,即使是低质量的音频,Whisper也能产生高质量的结果,并且对各种声音和语言的适应性极强,无需进行微调。
Whisper是开源的,有一系列可用的模型尺寸,可以作为众多语音转文字应用的有效解决方案,包括翻译、智能个人助理、车辆语音控制系统、客户服务运营等等。
在这篇文章中,我们将探讨Whisper与其他语音识别模型的不同之处,并将展示如何使用在Graphcore(拟未) IPU上运行的预构建的Paperspace Gradient Notebook,来起用Whisper Tiny的Hugging Face实现。

链接:https://ipu.dev/rDk9lk
Whisper有什么聪明之处?
OpenAI的Whisper创始人们开始着手解决自动语音识别(ASR)迄今面临的几个基本挑战:
语音模型训练花费不低
许多ASR模型依赖于超高质量的标记音频/文本数据来进行监督学习。遗憾的是,这种符合“黄金标准”的训练数据
本文介绍了OpenAI的Whisper模型,它能在低质量音频上实现高精度的语音识别,尤其适用于多种场景,如翻译、智能助手等。Whisper通过结合高质量和弱监督数据训练,使用多任务Transformer架构,提高了模型的稳健性和泛化能力。在Graphcore IPU上运行预建的Whisper Tiny模型,开发者可以轻松进行语音识别推理。
订阅专栏 解锁全文
403

被折叠的 条评论
为什么被折叠?



