Refining Graph Representation for Cross-DomainRecommendation Based on EdgePruning in Latent Space笔记

标题《Refining Graph Representation for Cross-DomainRecommendation Based on EdgePruning in Latent Space》阅读笔记

*模型整体架构:*如图


如上面整体架构图所示:
一、网络架构整体分为三个部分:

  1. Embedding Calculating Layer:这一层的主要作用得到用户和项目的嵌入向量(在源域和目标域中分别操作),嵌入向量的得到方式采用了LightGCN中的方式:

在这里插入图片描述
2.Eage Pruning Layer:该层是该论文最重要的一层,即创新点。该层的作用是将上面通过LightGCN所得到的源域和目标域的用户和项目嵌入向量当作输入,计算源域中的项目和目标域中项目的相关性,并去掉源域中与目标域项目相关度低的项目(称为:Eage Pruning)。
3.Prediction Layer:该层将在Eage Pruning Layer中的到的源域和目标域的用户和项目向量作为输入,分别进入到MLP中进行最终交互的预测。
二、总结
1.该篇文章的主要创新点在于去噪声。文章认为,源域中的一些用户交互的项目与目标域中所要推荐的项目之间关系不大。在其他的推荐系统中没有意识到这一点,将源域用户的所有交互历史记录都作为训练数据,而这些源域中与目标域关系不大的交互记录(项目)则可能成为网络训练过程中的噪声,影响推荐的精度,因此添加了一个边缘裁剪层用于将这种类型的项目去掉,提高推荐系统的精度。
2.从中我们可以看出在进行跨域推荐的过程中,源域数据中的噪声对于推荐系统的精度也是有影响的,因此在优化推荐系统时,不妨先尝试去噪。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值