一文梳理跨域推荐研究进展

本文梳理了跨域推荐的两种主要方法:基于映射和协同训练。前者通过映射函数连接不同领域的推荐系统,后者通过联合训练多领域数据实现知识迁移。文章介绍了CST、EMCDR、SSCDR、TMCDR等方法,并讨论了跨域推荐与多任务推荐的关系及其未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嘿,记得给“机器学习与推荐算法”添加星标


作者:朱勇椿

| 单位:中国科学院大学

研究方向:跨域推荐、多任务学习

现实生活中,一家公司通常拥有不同领域的业务,比如字节跳动有抖音、今日头条、西瓜视频,微信有看一看、公众号、视频号。而多个领域中可能有的领域数据多有的领域数据少,跨领域推荐(cross-domain recommendation)就旨在使用数据充足的领域数据帮助数据不足的领域进行更好的推荐。

跨领域领域推荐通常有两种设定,一种是共享用户的场景,比如看一看和视频号都是微信的产品,它们之间有很多共享的用户,这也称作基于用户的跨领域推荐。还有一种是共享物品的场景,比如腾讯视频和爱奇艺有很多公共的电影,这也称作基于物品的跨领域推荐。

这里编者根据方法类型将跨领域推荐主要分为两大类:

  • 基于映射的跨领域推荐方法

  • 协同训练多领域的跨领域推荐方法

大多数跨领域推荐方法实际上既可以用于共享用户的场景也可以用于共享物品的场景,因此这里我们不再按照场景划分,而是按照方法划分。编者本身是做迁移学习、推荐系统的,在本文的最后会简单谈谈编者对跨领域推荐的一些理解。


一、基于映射的跨领域推荐方法

跨领域推荐系统需要考虑如何连接两个领域的推荐系统,而基于映射的跨领域推荐方法则显式使用映射函数来建模两个领域间的联系。

1.1 CST[1]

这是一篇较早的跨领域推荐方法,发表于2010年的AAAI,该方法的思想近几年的话来说就是对user embedding和item embedding进行预训练。

具体来说,该方法先在源领域预训练一个SVD矩阵分解模型:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值