超详细的总结!大模型算法岗面试题(含答案)来了!

大模型应该是目前当之无愧的最有影响力的AI技术,它正在革新各个行业,包括自然语言处理、机器翻译、内容创作和客户服务等,正成为未来商业环境的重要组成部分。

截至目前大模型已超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关岗位和面试也开始越来越卷了。

年前,我们技术群组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、入门大模型算法岗该如何准备、面试常考点、面经等热门话题进行了热烈的讨论。

我今天给大家分享一些梳理的面试题,内容较长,喜欢记得收藏、关注、点赞。

一、基础篇

目前主流的开源模型体系有哪些?

  • Transformer体系:由Google提出的Transformer模型及其变体,如BERT、GPT等。
  • PyTorch Lightning:一个基于PyTorch的轻量级深度学习框架,用于快速原型设计和实验。
  • TensorFlow Model Garden:TensorFlow官方提供的一系列预训练模型和模型架构。
  • Hugging Face Transformers:一个流行的开源库,提供了大量预训练模型和工具,用于NLP任务。

prefix LM 和 causal LM 区别是什么?

  • prefix LM(前缀语言模型):在输入序列的开头添加一个可学习的任务相关的前缀,然后使用这个前缀和输入序列一起生成输出。这种方法可以引导模型生成适应特定任务的输出。
  • causal LM(因果语言模型):也称为自回归语言模型,它根据之前生成的 token 预测下一个 token。在生成文本时,模型只能根据已经生成的部分生成后续部分,不能访问未来的信息。

涌现能力是啥原因?

涌现能力(Emergent Ability)是指模型在训练过程中突然表现出的新的、之前未曾预料到的能力。这种现象通常发生在大型模型中,原因是大型模型具有更高的表示能力和更多的参数,可以更好地捕捉数据中的模式和关联。随着模型规模的增加,它们能够自动学习到更复杂、更抽象的概念和规律,从而展现出涌现能力。

大模型LLM的架构介绍?

大模型LLM(Large Language Models)通常采用基于Transformer的架构。Transformer模型由多个编码器或解码器层组成,每个层包含多头自注意力机制和前馈神经网络。这些层可以并行处理输入序列中的所有位置,捕获长距离依赖关系。大模型通常具有数十亿甚至数千亿个参数,可以处理大量的文本数据,并在各种NLP任务中表现出色。

前馈神经网络(Feedforward Neural Network)是一种最基础的神经网络类型,它的信息流动是单向的,从输入层经过一个或多个隐藏层,最终到达输出层。在前馈神经网络中,神经元之间的连接不会形成闭环,这意味着信号在前向传播过程中不会回溯。

前馈神经网络的基本组成单元是神经元,每个神经元都会对输入信号进行加权求和,然后通过一个激活函数产生输出。激活函数通常是非线性的,它决定了神经元的输出是否应该被激活,从而允许网络学习复杂和非线性的函数。
前馈神经网络在模式识别、函数逼近、分类、回归等多个领域都有应用。例如,在图像识别任务中,网络的输入层节点可能对应于图像的像素值,而输出层节点可能代表不同类别的概率分布。

训练前馈神经网络通常涉及反向传播(Backpropagation)算法,这是一种有效的学习算法,通过计算输出层的误差,并将这些误差信号沿网络反向传播,以调整连接权重。通过多次迭代这个过程,网络可以逐渐学习如何减少输出误差,从而实现对输入数据的正确分类或回归。

在设计和训练前馈神经网络时,需要考虑多个因素,包括网络的层数、每层的神经元数目、激活函数的选择、学习速率、正则化策略等,这些都对网络的性能有重要影响。

你比较关注哪些主流的开源大模型?

  • GPT系列:由OpenAI开发的生成式预训练模型,如GPT-3。
  • BERT系列:由Google开发的转换式预训练模型,如BERT、RoBERTa等。
  • T5系列:由Google开发的基于Transformer的编码器-解码器模型,如T5、mT5等。

目前大模型模型结构都有哪些?

  • Transformer:基于自注意力机制的模型,包括编码器、解码器和编码器-解码器结构。
  • GPT系列:基于自注意力机制的生成式预训练模型,采用解码器结构。
  • BERT系列:基于自注意力机制的转换式预训练模型,采用编码器结构。
  • T5系列:基于Transformer的编码器-解码器模型。

prefix LM 和 causal LM、encoder-decoder 区别及各自有什么优缺点?

  • prefix LM:通过在输入序列前添加可学习的任务相关前缀,引导模型生成适应特定任务的输出。优点是可以减少对预训练模型参数的修改,降低过拟合风险;缺点是可能受到前缀表示长度的限制,无法充分捕捉任务相关的信息。
  • causal LM:根据之前生成的 token 预测下一个 token,可以生成连贯的文本。优点是可以生成灵活的文本,适应各种生成任务;缺点是无法访问未来的信息,可能生成不一致或有误的内容。
  • encoder-decoder:由编码器和解码器组成,编码器将输入序列编码为固定长度的向量,解码器根据编码器的输出生成输出序列。优点是可以处理输入和输出序列不同长度的任务,如机器翻译;缺点是模型结构较为复杂,训练和推理计算量较大。

模型幻觉是什么?业内解决方案是什么?

模型幻觉是指模型在生成文本时产生的不准确、无关或虚构的信息。这通常发生在模型在缺乏足够信息的情况下进行推理或生成时。业内的解决方案包括:

  • 使用更多的数据和更高质量的训练数据来提高模型的泛化和准确性。
  • 引入外部知识源,如知识库或事实检查工具,以提供额外的信息和支持。
  • 强化模型的推理能力和逻辑推理,使其能够更好地处理复杂问题和避免幻觉。

大模型的Tokenizer的实现方法及原理?

大模型的Tokenizer通常使用字节对编码(Byte-Pair Encoding,BPE)算法。BPE算法通过迭代地将最频繁出现的字节对合并成新的符号,来构建一个词汇表。在训练过程中,模型会学习这些符号的嵌入表示。Tokenizer将输入文本分割成符号序列,然后将其转换为模型可以处理的数字表示。这种方法可以有效地处理大量文本数据,并减少词汇表的规模。

ChatGLM3 的词表实现方法?

ChatGLM3使用了一种改进的词表实现方法。它首先使用字节对编码(BPE)算法构建一个基本的词表,然后在训练过程中通过不断更新词表来引入新的词汇。具体来说,ChatGLM3在训练过程中会根据输入数据动态地合并出现频率较高的字节对,从而形成新的词汇。这样可以有效地处理大量文本数据,并减少词汇表的规模。同时,ChatGLM3还使用了一种特殊的词表分割方法,将词表分为多个片段,并在训练过程中逐步更新这些片段,以提高模型的泛化能力和适应性。

GPT3、LLAMA、ChatGLM 的Layer Normalization 的区别是什么?各自的优缺点是什么?

  • GPT3:采用了Post-Layer Normalization(后标准化)的结构,即先进行自注意力或前馈神经网络的计算,然后进行Layer Normalization。这种结构有助于稳定训练过程,提高模型性能。
  • LLAMA:采用了Pre-Layer Normalization(前标准化)的结构,即先进行Layer Normalization,然后进行自注意力或前馈神经网络的计算。这种结构有助于提高模型的泛化能力和鲁棒性。
  • ChatGLM:采用了Post-Layer Normalization的结构,类似于GPT3。这种结构可以提高模型的性能和稳定性。

大模型常用的激活函数有哪些?

  • ReLU(Rectified Linear Unit):一种简单的激活函数,可以解决梯度消失问题,加快训练速度。
  • GeLU(Gaussian Error Linear Unit):一种改进的ReLU函数,可以提供更好的性能和泛化能力。
  • Swish:一种自门控激活函数,可以提供非线性变换,并具有平滑和非单调的特性。

Multi-query Attention 与 Grouped-query Attention 是否了解?区别是什么?

  • Multi-query Attention和Grouped-query Attention是两种不同的注意力机制变种,用于改进和扩展传统的自注意力机制。
  • Multi-query Attention:在Multi-query Attention中,每个查询可以与多个键值对进行交互,从而捕捉更多的上下文信息。这种机制可以提高模型的表达能力和性能,特别是在处理长序列或复杂关系时。
  • Grouped-query Attention:在Grouped-query Attention中,查询被分成多个组,每个组内的查询与对应的键值对进行交互。这种机制可以减少计算复杂度,提高效率,同时仍然保持较好的性能。

多模态大模型是否有接触?落地案例?

多模态大模型是指可以处理和理解多种模态数据(如文本、图像、声音等)的模型。落地案例,例如:

  • OpenAI的DALL-E和GPT-3:DALL-E是一个可以生成图像的模型,而GPT-3可以处理和理解文本。两者结合可以实现基于文本描述生成图像的功能。
  • Google的Multimodal Transformer:这是一个可以同时处理文本和图像的模型,用于各种多模态任务,如图像字幕生成、视觉问答等。

二、大模型(LLMs)进阶

1.llama 输入句子长度理论上可以无限长吗?

LLaMA(Large Language Model Adaptation)模型的输入句子长度受到硬件资源和模型设计的限制。理论上,如果硬件资源足够,模型可以处理非常长的输入句子。然而,实际上,由于内存和处理能力的限制,输入句子长度通常是有限制的。在实际应用中,开发者会根据具体需求和硬件配置来确定合适的输入句子长度。

2.什么是 LLMs 复读机问题?

LLMs 复读机问题是指在某些情况下,大型语言模型在生成文本时会重复之前已经生成的内容,导致生成的文本缺乏多样性和创造性。

3.为什么会出现 LLMs 复读机问题?

LLMs 复读机问题可能由多种因素引起,包括模型训练数据中的重复模式、模型在处理长序列时的注意力机制失效、或者模型在生成文本时对过去信息的过度依赖等。

4.如何缓解 LLMs 复读机问题?

  • 数据增强:通过增加训练数据的多样性和复杂性,减少重复模式的出现。
  • 模型改进:改进模型的结构和注意力机制,使其更好地处理长序列和避免过度依赖过去信息。
  • 生成策略:在生成文本时采用多样化的策略,如抽样生成或引入随机性,以增加生成文本的多样性。

5.LLMs 复读机问题

6.llama 系列问题

7.什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型?

BERT 模型通常用于需要理解文本深层语义的任务,如文本分类、命名实体识别等。LLaMA 和 ChatGLM 类大模型则适用于需要生成文本或进行更复杂语言理解的任务,如对话系统、文本生成等。选择哪种模型取决于任务的需求和可用资源。

8.各个专业领域是否需要各自的大模型来服务?

不同的专业领域需要特定的大模型来更好地服务。专业领域的大模型可以针对特定领域的语言和知识进行优化,提供更准确和相关的回答和生成文本。

9.如何让大模型处理更长的文本?

  • 使用模型架构,如Transformer,它可以有效地处理长序列。
  • 使用内存机制,如外部记忆或缓存,来存储和检索长文本中的信息。
  • 使用分块方法,将长文本分割成更小的部分,然后分别处理这些部分。

10.大模型参数微调、训练、推理

如何让大模型输出合规化?

  • 过滤不当内容:使用内容过滤器来识别和过滤掉不当的语言或敏感内容。
  • 指导性提示:提供明确的提示,指导模型生成符合特定标准和偏好的输出。
  • 后处理:对模型的输出进行后处理,例如使用语法检查器和修正工具来提高文本的质量。
  • 强化学习:使用强化学习来训练模型,使其偏好生成符合特定标准的输出。
    应用模式变更
    应用模式变更是指在部署模型时,根据实际应用的需求和环境,对模型的配置、部署策略或使用方式进行调整。例如,一个在云端运行的模型可能需要调整其资源分配以适应不同的负载,或者在边缘设备上运行的模型可能需要减少其内存和计算需求以适应有限的资源。
    应用模式变更可能包括:
  • 资源调整:根据需求增加或减少用于运行模型的计算资源。
  • 模型压缩:使用模型压缩技术如剪枝、量化来减少模型大小。
  • 动态部署:根据负载动态地扩展或缩小模型服务的实例数量。
  • 缓存策略:实施缓存机制来存储常用查询的响应,减少重复计算的次数。
  • 性能优化:对模型进行性能分析,并优化其运行效率,例如通过批处理输入数据来提高吞吐量。
    举例来说,如果一个大型语言模型在云平台上运行,当用户查询量增加时,可以通过增加服务器的数量或使用更高效的硬件来扩展其能力。相反,如果模型需要在嵌入式设备上运行,可能需要将模型压缩到更小的尺寸,并优化其运行时的内存使用,以确保模型可以在资源有限的设备上顺利运行。
    在实际操作中,应用模式变更通常需要综合考虑模型的性能、成本、可扩展性和业务需求,以找到最佳的平衡点。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享]👈

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享👈

在这里插入图片描述

  • 27
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值