PaddlePaddle与PaddleSeg环境安装步骤

PaddlePaddle与PaddleSeg环境安装步骤



大概步骤:安装python3.10 --》安装CUDA 11.8–》安装CUDNN–》安装PaddlePaddle–》安装Git–》安装PaddleSeg–》卸载numpy–》安装numpy1.26.4版本–》完成

0.工具包

nas共享盘1 --> 01 共享软件 --> 工具包

1.安装Python

1.1Python安装

python官网:https://www.python.org/downloads/

== 0.打开设置,点击系统,向下翻找到系统信息,打开后就能清楚看到自己的电脑是不是64位操作系统的了==
在这里插入图片描述

1.工具包中打开python3.10.11文件夹,点击运行里面的exe程序,安装python,此处全部勾选,选择“自主安装”
在这里插入图片描述

在这里插入图片描述

2.默认全部勾选,点击继续Next

在这里插入图片描述

3.勾选“Install Python 3.10 for all users”选项,默认路径即可,点击安装

在这里插入图片描述

4.安装成功,点击close,关闭

在这里插入图片描述

1.2测试检验

1.同时按住win+r键,然后输入cmd,如图所示,然后按下回车
在这里插入图片描述
2.然后在命令行里输入python -V(注意,-V是大写),结果如图类似即可

在这里插入图片描述
3.如果没有出现结果,那就是环境变量没有添加,请看下面操作。

1.3修改环境变量(检验结果成功可跳过)

1.打开设置里的系统信息,然后点击“高级系统设置”,再点击环境变量打开到对应环境配置界面
在这里插入图片描述
在这里插入图片描述

2.打开环境配置后,在下面的系统变量中双击Path

在这里插入图片描述
3.查看是否已经配置好环境,没有配置好就添加上,添加好后“高级系统设置”的所有窗口都要点确定,否则不生效。
在这里插入图片描述

4.重新打开新的cmd,输入python -V,检验是否配置成功。

2.安装CUDA

2.1CUDA安装

1.打开工具包中的CUDA11.8.0文件夹,运行里面的exe程序
在这里插入图片描述
2.默认路径,一直点下一步,精简安装
在这里插入图片描述
3.勾选同意,下一步,等待下载完成
在这里插入图片描述
4.成功
在这里插入图片描述

2.2验证CUDA版本

重新打开cmd,输入nvcc --version查看版本信息是否是11.8(标黄部分)。没有显示则看下一步2.3
在这里插入图片描述

2.3环境配置(上一步成功则可以跳过)

1.你需要确保PATH环境变量指向你想使用的CUDA版本的binlibnvvp目录。例如,如果你想使用CUDA 11.8,你需要确保PATH包含类似于C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\binC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp的路径。
在这里插入图片描述

2.更改CUDA_PATH: 如果你的应用程序使用CUDA_PATH环境变量,同样需要更新此变量以指向正确的CUDA安装目录。如果你要使用CUDA 11.8,那么CUDA_PATH设置为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
在这里插入图片描述

3.安装CUDNN

工具包中运行cudnn程序,默认选项,一直下一步,直到成功
在这里插入图片描述

4.安装GPU版 的 PaddlePaddle

官方安装链接:https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/windows-pip.html

1.本篇采用的是pip方式安装,其他安装方式请看上方链接内容。

2.检查环境
cmd下分别运行下面三个命令,检查环境是否满足要求

  • 需要确认 python 的版本是否满足要求

使用以下命令确认是 3.8/3.9/3.10/3.11/3.12/3.13

python --version
  • 需要确认 pip 的版本是否满足要求,要求 pip 版本为 20.2.2 或更高版本
python -m pip --version
  • 需要确认 Python 和 pip 是 64bit,并且处理器架构是 x86_64(或称作 x64、Intel 64、AMD64)架构。下面的第一行输出的是"64bit",第二行输出的是"x86_64"、"x64"或"AMD64"即可:
python -c "import platform;print(platform.architecture()[0]);print(platform.machine())"

3.安装

安装GPU 版的CUDA11.8的PaddlePaddle

cmd中输入如下命令,等待下载安装完成…

python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/

在这里插入图片描述

4.验证安装的是否是paddlepaddle-gpu

cmd中输入pip list,列表中显示有paddlepaddle-gpu(标黄部分)即为安装版本成功
在这里插入图片描述

5.验证是否能够调用

在cmd下运行python,进入 python 解释器
在这里插入图片描述

输入import paddle
在这里插入图片描述
再输入 paddle.utils.run_check()
在这里插入图片描述

如果出现PaddlePaddle is installed successfully!,说明您已成功安装。
在这里插入图片描述

5.安装PaddleSeg

打开该网址,按照步骤操作
链接:点我

== 注: == 若打不开按下方步骤操作

5.1.环境要求

  • OS 64位操作系统
  • Python 3(3.6/3.7/3.8/3.9/3.10),64位版本
  • pip/pip3(9.0.1+),64位版本
  • CUDA >= 10.2
  • cuDNN >= 7.6
  • PaddlePaddle (版本==2.5)

5.2.PaddleSeg安装

5.2.1安装git

1.安装方法1:工具包中点击git文件夹中的exe文件,默认选项,安装成功
在这里插入图片描述

安装方法2:Git下载官网地址:https://git-scm.com/downloads
进入后根据电脑操作系统下载相应的安装包
在这里插入图片描述

但是官网下载会很慢

这里提供一个快速下载的办法,请参考
https://blog.csdn.net/weixin_44198965/article/details/99686507

下载完毕之后打开文件
所有的选项都采用默认设置

下载完成

5.5.2验证Git能否使用

重新打开cmd,输入git,显示git详细信息即为成功,若未显示则看下方5.5.3
在这里插入图片描述

5.5.3配置环境变量

1.找到Git安装路径中的bincmd位置,例如: C:\Program Files\Git\bin
C:\Program Files\Git\cmd

2.右键“计算机” -> “属性” -> “高级系统设置” -> “环境变量”。

3.在“系统变量”中找到“Path”,选中并点击“编辑”。

4.将上述路径添加到Path变量中,保存并退出(一定要保存,否则不生效)

5.验证:重新打开cmd,输入git,显示git详细信息即为成功
在这里插入图片描述

5.2.3源码安装PaddleSeg

从Github下载PaddleSeg代码。

1.打开cmd输入下面命令:

git clone https://github.com/PaddlePaddle/PaddleSeg

(若遇到下载失败问题请移步至问题3:git下载PaddleSeg失败
在这里插入图片描述

如果连不上Github,可以从Gitee下载PaddleSeg代码,但是Gitee上代码可能不是最新。

git clone https://gitee.com/paddlepaddle/PaddleSeg.git

2.执行如下命令,从源码编译安装PaddleSeg包。大家对于PaddleSeg/paddleseg目录下的修改,都会立即生效,无需重新安装。

cd PaddleSeg
pip install -r requirements.txt
pip install -v -e .

注: 第三个命令后面有.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.2.4安装发布的PaddleSeg

执行如下命令,安装发布的PaddleSeg包。

pip install paddleseg

在这里插入图片描述

5.3 将numpy版本降级

因为numpy版本太高,会导致PaddleSeg验证失败,这里需将numpy版本降级

1.卸载numpy

pip uninstall numpy

在这里插入图片描述
输入y
在这里插入图片描述

2.重新安装numpy 1.26.4版本

pip install numpy==1.26.4

5.4 确认安装成功

在PaddleSeg目录下执行如下命令,会进行简单的单卡预测。查看执行输出的log,没有报错,则验证安装成功。

sh tests/install/check_predict.sh

效果图如下
在这里插入图片描述


6.可能遇到的问题

6.4.1问题1:numpy版本太高,需将numpy版本降级

== 解决办法:==
卸载numpy

pip uninstall numpy

重新安装numpy 1.26.4版本

pip install numpy==1.26.4

问题解决
在这里插入图片描述

6.4.2问题2:paddlepaddle-gpu错误安装

检验方法,在pycharm里运行该命令

pip list

内容中显示出paddlepaddle-gpu即为安装正确(标黄部分),否则重装
在这里插入图片描述

== 注: == 可能会安装为paddlepaddle,没有带-gpu,这种情况需要卸载paddlepaddle后再安装paddlepaddle-gpu才行。具体步骤如下:
1.卸载paddlepaddle
cmd中输入命令

2.安装paddlepaddle-gpu

6.4.3问题3:git下载PaddleSeg失败

如图

在这里插入图片描述
解决方法:取消代理设置

这是最常见的解决方法之一,通过在终端执行以下命令,可以取消 Git 的代理设置

cmd中依次输入以下命令:

git config --global --unset http.proxy 
git config --global --unset https.proxy

这样就可以清除 Git 的代理设置,让其直接连接网络进行操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值