PaddlePaddle与PaddleSeg环境安装步骤
环境安装
大概步骤:安装python3.10 --》安装CUDA 11.8–》安装CUDNN–》安装PaddlePaddle–》安装Git–》安装PaddleSeg–》卸载numpy–》安装numpy1.26.4版本–》完成
0.工具包
nas共享盘1 --> 01 共享软件 --> 工具包
1.安装Python
1.1Python安装
python官网:https://www.python.org/downloads/
== 0.打开设置,点击系统,向下翻找到系统信息,打开后就能清楚看到自己的电脑是不是64位操作系统的了==
1.工具包中打开python3.10.11文件夹,点击运行里面的exe程序,安装python,此处全部勾选,选择“自主安装”
2.默认全部勾选,点击继续Next
3.勾选“Install Python 3.10 for all users”选项,默认路径即可,点击安装
4.安装成功,点击close,关闭
1.2测试检验
1.同时按住win+r键,然后输入cmd,如图所示,然后按下回车
2.然后在命令行里输入python -V(注意,-V是大写),结果如图类似即可
3.如果没有出现结果,那就是环境变量没有添加,请看下面操作。
1.3修改环境变量(检验结果成功可跳过)
1.打开设置里的系统信息,然后点击“高级系统设置”,再点击环境变量打开到对应环境配置界面
2.打开环境配置后,在下面的系统变量中双击Path
3.查看是否已经配置好环境,没有配置好就添加上,添加好后“高级系统设置”的所有窗口都要点确定,否则不生效。
4.重新打开新的cmd,输入python -V,检验是否配置成功。
2.安装CUDA
2.1CUDA安装
1.打开工具包中的CUDA11.8.0文件夹,运行里面的exe程序
2.默认路径,一直点下一步,精简安装
3.勾选同意,下一步,等待下载完成
4.成功
2.2验证CUDA版本
重新打开cmd,输入nvcc --version
查看版本信息是否是11.8(标黄部分)。没有显示则看下一步2.3
2.3环境配置(上一步成功则可以跳过)
1.你需要确保PATH环境变量指向你想使用的CUDA版本的bin
和libnvvp
目录。例如,如果你想使用CUDA 11.8,你需要确保PATH
包含类似于C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
和C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
的路径。
2.更改CUDA_PATH: 如果你的应用程序使用CUDA_PATH
环境变量,同样需要更新此变量以指向正确的CUDA安装目录。如果你要使用CUDA 11.8,那么CUDA_PATH
设置为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
3.安装CUDNN
工具包中运行cudnn程序,默认选项,一直下一步,直到成功
4.安装GPU版 的 PaddlePaddle
1.本篇采用的是pip方式安装,其他安装方式请看上方链接内容。
2.检查环境
cmd下分别运行下面三个命令,检查环境是否满足要求
- 需要确认 python 的版本是否满足要求
使用以下命令确认是 3.8/3.9/3.10/3.11/3.12/3.13
python --version
- 需要确认 pip 的版本是否满足要求,要求 pip 版本为 20.2.2 或更高版本
python -m pip --version
- 需要确认 Python 和 pip 是 64bit,并且处理器架构是 x86_64(或称作 x64、Intel 64、AMD64)架构。下面的第一行输出的是"64bit",第二行输出的是"x86_64"、"x64"或"AMD64"即可:
python -c "import platform;print(platform.architecture()[0]);print(platform.machine())"
3.安装
安装GPU 版的CUDA11.8的PaddlePaddle
cmd中输入如下命令,等待下载安装完成…
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
4.验证安装的是否是paddlepaddle-gpu
cmd中输入pip list
,列表中显示有paddlepaddle-gpu(标黄部分)即为安装版本成功
5.验证是否能够调用
在cmd下运行python
,进入 python 解释器
输入import paddle
再输入 paddle.utils.run_check()
如果出现PaddlePaddle is installed successfully!
,说明您已成功安装。
5.安装PaddleSeg
打开该网址,按照步骤操作
链接:点我
== 注: == 若打不开按下方步骤操作
5.1.环境要求
- OS 64位操作系统
- Python 3(3.6/3.7/3.8/3.9/3.10),64位版本
- pip/pip3(9.0.1+),64位版本
- CUDA >= 10.2
- cuDNN >= 7.6
- PaddlePaddle (版本==2.5)
5.2.PaddleSeg安装
5.2.1安装git
1.安装方法1:工具包中点击git文件夹中的exe文件,默认选项,安装成功
安装方法2:Git下载官网地址:https://git-scm.com/downloads
进入后根据电脑操作系统下载相应的安装包
但是官网下载会很慢
这里提供一个快速下载的办法,请参考
https://blog.csdn.net/weixin_44198965/article/details/99686507
下载完毕之后打开文件
所有的选项都采用默认设置
下载完成
5.5.2验证Git能否使用
重新打开cmd,输入git,显示git详细信息即为成功,若未显示则看下方5.5.3
5.5.3配置环境变量
1.找到Git
安装路径中的bin
和cmd
位置,例如: C:\Program Files\Git\bin
C:\Program Files\Git\cmd
2.右键“计算机” -> “属性” -> “高级系统设置” -> “环境变量”。
3.在“系统变量”中找到“Path”,选中并点击“编辑”。
4.将上述路径添加到Path变量中,保存并退出(一定要保存,否则不生效)。
5.验证:重新打开cmd,输入git,显示git详细信息即为成功
5.2.3源码安装PaddleSeg
从Github下载PaddleSeg代码。
1.打开cmd
输入下面命令:
git clone https://github.com/PaddlePaddle/PaddleSeg
(若遇到下载失败问题请移步至问题3:git下载PaddleSeg失败)
如果连不上Github,可以从Gitee下载PaddleSeg代码,但是Gitee上代码可能不是最新。
git clone https://gitee.com/paddlepaddle/PaddleSeg.git
2.执行如下命令,从源码编译安装PaddleSeg包。大家对于PaddleSeg/paddleseg目录下的修改,都会立即生效,无需重新安装。
cd PaddleSeg
pip install -r requirements.txt
pip install -v -e .
注: 第三个命令后面有.
5.2.4安装发布的PaddleSeg
执行如下命令,安装发布的PaddleSeg包。
pip install paddleseg
5.3 将numpy版本降级
因为numpy版本太高,会导致PaddleSeg验证失败,这里需将numpy版本降级
1.卸载numpy
pip uninstall numpy
输入y
2.重新安装numpy 1.26.4版本
pip install numpy==1.26.4
5.4 确认安装成功
在PaddleSeg目录下执行如下命令,会进行简单的单卡预测。查看执行输出的log,没有报错,则验证安装成功。
sh tests/install/check_predict.sh
效果图如下
6.可能遇到的问题
6.4.1问题1:numpy版本太高,需将numpy版本降级
== 解决办法:==
卸载numpy
pip uninstall numpy
重新安装numpy 1.26.4版本
pip install numpy==1.26.4
问题解决
6.4.2问题2:paddlepaddle-gpu错误安装
检验方法,在pycharm里运行该命令
pip list
内容中显示出paddlepaddle-gpu即为安装正确(标黄部分),否则重装
== 注: == 可能会安装为paddlepaddle,没有带-gpu,这种情况需要卸载paddlepaddle后再安装paddlepaddle-gpu才行。具体步骤如下:
1.卸载paddlepaddle
cmd中输入命令
2.安装paddlepaddle-gpu
6.4.3问题3:git下载PaddleSeg失败
如图
解决方法:取消代理设置
这是最常见的解决方法之一,通过在终端执行以下命令,可以取消 Git 的代理设置
cmd中依次输入以下命令:
git config --global --unset http.proxy
git config --global --unset https.proxy
这样就可以清除 Git 的代理设置,让其直接连接网络进行操作。