【AcWing】 788. 逆序对的数量

788. 逆序对的数量

给定一个长度为 n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n,表示数列的长度。

第二行包含 n个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1≤n≤100000,数列中的元素的取值范围 [1,109]。

输入样例:

6
2 3 4 5 6 1

输出样例:

5

思路:

代码样例:

#include<bits/stdc++.h>

using  namespace std;

const int N =100010;

int n;
int q[N],tmp[N];

long long merge_sort(int l, int r){
	if(l>=r) return 0;
	int mid=l+r>>1;
	long long res=merge_sort(l,mid)+merge_sort(mid+1,r);
	
	int k=0,i=l,j=mid+1;
	while(i<=mid&&j<=r){
		if(q[i]<=q[j])tmp[k++]=q[i++];
		else{
			tmp[k++]=q[j++];
			res+=mid-i+1;
		}
	} 
	while(i<=mid) tmp[k++]=q[i++];
	while(j<=r) tmp[k++]=q[j++];
	
	for(int i=l,j=0;i<=r;i++,j++) q[i]=tmp[j];
	
	return res;
}

int main(){
	cin>>n;
	for(int i=0;i<n;i++) cin>>q[i];
	
	cout<<merge_sort(0,n-1)<<endl;
	
	return 0;
}
归并排序是一种经典的排序算法,可以用于计算逆序对数量逆序对指的是在一个数组中,两个元素的顺序与它们在原数组中的顺序相反。 对于给定的数组,我们可以使用归并排序来计算逆序对数量。具体步骤如下: 1. 将数组不断地分成两半,直到每个子数组只有一个元素。 2. 递归地将这些子数组合并起来。在合并的过程中,统计逆序对数量。 3. 在合并两个子数组时,需要维护两个指针,分别指向两个子数组的开头。比较这两个指针所指向的元素的大小,如果前一个指针所指向的元素大于后一个指针所指向的元素,则存在逆序对。 4. 在合并过程中,将较小的元素放入一个临时数组,并将指针向后移动。如果存在逆序对,则逆序对数量等于第一个子数组中剩余的元素个数。 以下是一个示例代码,用于计算逆序对数量: ```python def merge_sort(nums): if len(nums) <= 1: return nums, 0 mid = len(nums) // 2 left, count_left = merge_sort(nums[:mid]) right, count_right = merge_sort(nums[mid:]) merged = [] count = count_left + count_right i, j = 0, 0 while i < len(left) and j < len(right): if left[i] <= right[j]: merged.append(left[i]) i += 1 else: merged.append(right[j]) count += len(left) - i j += 1 merged += left[i:] merged += right[j:] return merged, count def reversePairs(nums): _, count = merge_sort(nums) return count ``` 对于题目中给定的数组,调用 `reversePairs` 函数即可计算出逆序对数量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值