manacher

P3805 【模板】manacher 算法

Description \text{Description} Description

给出一个只由小写英文字符 a,b,c, … ,y,z \text{a,b,c,}\dots\text{,y,z} a,b,c,,y,z 组成的长度为 n n n 的字符串 S S S,求 S S S 中最长回文串的长度 。

Solution \text{Solution} Solution

例如 S = abcbac S=\text{abcbac} S=abcbac 时, S S S 中最长回文串为 abcba \text{abcba} abcba,长度为 5 5 5

对于 最长回文串 的问题,我们有以下几种方法:

1. 枚举

枚举左右端点 l , r l,r l,r,再判断区间 [ l , r ] [l,r] [l,r] 内是否为回文串并更新答案。

时间复杂度 O ( n 3 ) \mathcal{O}(n^3) O(n3)

2. 扩展

枚举中间点 m i d mid mid,再尝试往两边扩展。

时间复杂度 O ( n 2 ) \mathcal{O}(n^2) O(n2)

3. m a n a c h e r \rm manacher manacher

按照我们对字符串算法的感觉,最后肯定是能做到线性的。

所以 m a n a c h e r \rm manacher manacher 算法诞生了!

当然我们习惯叫它“马拉车”。

它的思想和 K M P \rm KMP KMP 类似,都是通过某些方法来减少重复的计算。

首先它做了一些细节上的优化,我们看到扩展算法中 n n n 可能为奇数或偶数,当 n n n 是奇数时还比较好弄,但 n n n 为偶数时 m i d mid mid 就会变成中间的空隙,所以 m a n a c h e r \rm manacher manacher 有一个 init ⁡ \operatorname{init} init 函数来对字符串进行改造。

void init() //n为原字符串长度,l为改造后长度
{
	s[0] = '$';
	s[++l] = '#';
	for (int i = 0; i < n; i++)
	{
		s[++l] = a[i];
		s[++l] = '#';
	}
}

若改造前 S = abcbac S=\text{abcbac} S=abcbac,则改造后 $S=\text{$#a#b#c#b#a#c#}$。

这个第 0 0 0 位的 $\text{$}$ 是防止越界的,我们可以不管它。

除去 $$$ 后,这个新的 S S S 的长度 l l l 就变成了 2 n + 1 2n+1 2n+1,它一定是个奇数,这样就方便处理了。

然后进入正题,即如何减少重复的计算。


我们开一个 l e n len len 数组, l e n i len_i leni 表示以 i i i 为中心点最多能往两边扩展多少。

当 $S=\text{$#a#b#c#b#a#c#}$ 时, S 6 = c S_6=\text{c} S6=c,以 c \text{c} c 为中心点,往左能扩展到 #a#b#c \text{\#a\#b\#c} #a#b#c,往右能扩展到 c # b # a # c\#b\#a\# c#b#a#,所以 l e n 6 = 6 len_6=6 len6=6

再用两个变量 m a x r maxr maxr m i d mid mid m a x r maxr maxr 记录当前往两边扩展到的最右端, m i d mid mid 则是 m a x r maxr maxr 所对应的中心点。

1 1 1 遍历到 l l l,当遍历到第 i i i 位时:

  1. i ≤ m a x r i\le maxr imaxr

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nlc4xmW0-1633510242077)(https://images.cnblogs.com/cnblogs_com/blogs/698299/galleries/2012019/t_210922101110无标题.png?a=1632305630488)]

    设♂这个 m a x r maxr maxr 关于 m i d mid mid 对称的是 x x x,那么 x ∼ m a x r x\sim maxr xmaxr 这一段是回文的。

    再设 i i i 关于 m i d mid mid 对称的是 j j j,因为是回文的所以 l e n i = l e n j len_i=len_j leni=lenj。但是如果 i + l e n i − 1 > m a x r i+len_i-1>maxr i+leni1>maxr,这一段多出去的部分我们是不知道的,只能令 l e n i ← min ⁡ ( l e n j , m a x r − i + 1 ) len_i\gets\min(len_j,maxr-i+1) lenimin(lenj,maxri+1),其中 m a x r − i + 1 maxr-i+1 maxri+1 i ∼ m a x r i\sim maxr imaxr 这一段的长度。

    问题来了:该如何计算 j j j 呢?

    好吧我知道很水

    ∵ m i d = i + j 2 \because mid=\dfrac{i+j}{2} mid=2i+j

    ∴ j = 2 × m i d − i \therefore j=2\times mid-i j=2×midi

  2. 现在无论 i i i 是否 ≤ m a x r \le maxr maxr,都只剩下我们没有处理过的部分了,那就暴力呗。

  3. 尝试更新 m a x r , m i d maxr,mid maxr,mid

void manacher()
{
	int maxr = 0, mid = 0;
	for (int i = 1; i <= l; i++)
	{
		if (i <= maxr)
		{
			len[i] = min(len[(mid << 1) - i], maxr - i + 1); //j = (mid << 1) - i
		}
		while (s[i + len[i]] == s[i - len[i]]) //暴力扩展
		{
			len[i]++;
		}
		if (i + len[i] - 1 > maxr) //更新
		{
			maxr = i + len[i] - 1;
			mid = i;
		}
	}
}

显然最后 a n s = max ⁡ 1 ≤ i ≤ l { l e n i } ans=\max_{1\le i\le l}\{len_i\} ans=max1il{leni},但是输出的并不是 a n s ans ans 而是 a n s − 1 ans-1 ans1

还是以 $S=\text{$#a#b#c#b#a#c#}$ 为例,最长往左扩展到 #a#b#c \text{\#a\#b\#c} #a#b#c l e n 6 = 6 len_6=6 len6=6,那么去掉 # \# # abc \text{abc} abc 的长度就是 l e n 6 2 \dfrac{len_6}{2} 2len6,整个回文串 abcba \text{abcba} abcba 的长度就是 2 × l e n 6 2 − 1 = l e n 6 − 1 2\times\dfrac{len_6}{2}-1=len_6-1 2×2len61=len61,所以最后输出的是 a n s − 1 ans-1 ans1

时间复杂度

其实就相当于一直更新 m a x r maxr maxr,把 m a x r maxr maxr 0 0 0 推到底,因此时间复杂度为 O ( n ) \mathcal{O}(n) O(n)

Code \text{Code} Code

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int MAXN = 1.1e7 + 5;

char a[MAXN], s[MAXN << 1];
int len[MAXN << 1];
int n, l;

void init()
{
	s[0] = '$';
	s[++l] = '#';
	for (int i = 0; i < n; i++)
	{
		s[++l] = a[i];
		s[++l] = '#';
	}
}

void manacher()
{
	int maxr = 0, mid = 0;
	for (int i = 1; i <= l; i++)
	{
		if (i <= maxr)
		{
			len[i] = min(len[(mid << 1) - i], maxr - i + 1);
		}
		while (s[i + len[i]] == s[i - len[i]])
		{
			len[i]++;
		}
		if (i + len[i] - 1 > maxr)
		{
			maxr = i + len[i] - 1;
			mid = i;
		}
	}
}

int main()
{
	scanf("%s", a);
	n = strlen(a);
	init();
	manacher();
	int ans = 0;
	for (int i = 1; i <= l; i++)
	{
		ans = max(ans, len[i]);
	}
	printf("%d\n", ans - 1);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值