Description \text{Description} Description
给出一个只由小写英文字符 a,b,c, … ,y,z \text{a,b,c,}\dots\text{,y,z} a,b,c,…,y,z 组成的长度为 n n n 的字符串 S S S,求 S S S 中最长回文串的长度 。
Solution \text{Solution} Solution
例如 S = abcbac S=\text{abcbac} S=abcbac 时, S S S 中最长回文串为 abcba \text{abcba} abcba,长度为 5 5 5。
对于 最长回文串 的问题,我们有以下几种方法:
1. 枚举
枚举左右端点 l , r l,r l,r,再判断区间 [ l , r ] [l,r] [l,r] 内是否为回文串并更新答案。
时间复杂度 O ( n 3 ) \mathcal{O}(n^3) O(n3)。
2. 扩展
枚举中间点 m i d mid mid,再尝试往两边扩展。
时间复杂度 O ( n 2 ) \mathcal{O}(n^2) O(n2)。
3. m a n a c h e r \rm manacher manacher
按照我们对字符串算法的感觉,最后肯定是能做到线性的。
所以 m a n a c h e r \rm manacher manacher 算法诞生了!
当然我们习惯叫它“马拉车”。
它的思想和 K M P \rm KMP KMP 类似,都是通过某些方法来减少重复的计算。
首先它做了一些细节上的优化,我们看到扩展算法中 n n n 可能为奇数或偶数,当 n n n 是奇数时还比较好弄,但 n n n 为偶数时 m i d mid mid 就会变成中间的空隙,所以 m a n a c h e r \rm manacher manacher 有一个 init \operatorname{init} init 函数来对字符串进行改造。
void init() //n为原字符串长度,l为改造后长度
{
s[0] = '$';
s[++l] = '#';
for (int i = 0; i < n; i++)
{
s[++l] = a[i];
s[++l] = '#';
}
}
若改造前 S = abcbac S=\text{abcbac} S=abcbac,则改造后 $S=\text{$#a#b#c#b#a#c#}$。
这个第 0 0 0 位的 $\text{$}$ 是防止越界的,我们可以不管它。
除去 $$$ 后,这个新的 S S S 的长度 l l l 就变成了 2 n + 1 2n+1 2n+1,它一定是个奇数,这样就方便处理了。
然后进入正题,即如何减少重复的计算。
我们开一个 l e n len len 数组, l e n i len_i leni 表示以 i i i 为中心点最多能往两边扩展多少。
当 $S=\text{$#a#b#c#b#a#c#}$ 时, S 6 = c S_6=\text{c} S6=c,以 c \text{c} c 为中心点,往左能扩展到 #a#b#c \text{\#a\#b\#c} #a#b#c,往右能扩展到 c # b # a # c\#b\#a\# c#b#a#,所以 l e n 6 = 6 len_6=6 len6=6。
再用两个变量 m a x r maxr maxr 和 m i d mid mid, m a x r maxr maxr 记录当前往两边扩展到的最右端, m i d mid mid 则是 m a x r maxr maxr 所对应的中心点。
从 1 1 1 遍历到 l l l,当遍历到第 i i i 位时:
-
若 i ≤ m a x r i\le maxr i≤maxr
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nlc4xmW0-1633510242077)(https://images.cnblogs.com/cnblogs_com/blogs/698299/galleries/2012019/t_210922101110无标题.png?a=1632305630488)]
设♂这个 m a x r maxr maxr 关于 m i d mid mid 对称的是 x x x,那么 x ∼ m a x r x\sim maxr x∼maxr 这一段是回文的。
再设 i i i 关于 m i d mid mid 对称的是 j j j,因为是回文的所以 l e n i = l e n j len_i=len_j leni=lenj。但是如果 i + l e n i − 1 > m a x r i+len_i-1>maxr i+leni−1>maxr,这一段多出去的部分我们是不知道的,只能令 l e n i ← min ( l e n j , m a x r − i + 1 ) len_i\gets\min(len_j,maxr-i+1) leni←min(lenj,maxr−i+1),其中 m a x r − i + 1 maxr-i+1 maxr−i+1 为 i ∼ m a x r i\sim maxr i∼maxr 这一段的长度。
问题来了:该如何计算 j j j 呢?
好吧我知道很水∵ m i d = i + j 2 \because mid=\dfrac{i+j}{2} ∵mid=2i+j
∴ j = 2 × m i d − i \therefore j=2\times mid-i ∴j=2×mid−i
-
现在无论 i i i 是否 ≤ m a x r \le maxr ≤maxr,都只剩下我们没有处理过的部分了,那就暴力呗。
-
尝试更新 m a x r , m i d maxr,mid maxr,mid。
void manacher()
{
int maxr = 0, mid = 0;
for (int i = 1; i <= l; i++)
{
if (i <= maxr)
{
len[i] = min(len[(mid << 1) - i], maxr - i + 1); //j = (mid << 1) - i
}
while (s[i + len[i]] == s[i - len[i]]) //暴力扩展
{
len[i]++;
}
if (i + len[i] - 1 > maxr) //更新
{
maxr = i + len[i] - 1;
mid = i;
}
}
}
显然最后 a n s = max 1 ≤ i ≤ l { l e n i } ans=\max_{1\le i\le l}\{len_i\} ans=max1≤i≤l{leni},但是输出的并不是 a n s ans ans 而是 a n s − 1 ans-1 ans−1。
还是以 $S=\text{$#a#b#c#b#a#c#}$ 为例,最长往左扩展到 #a#b#c \text{\#a\#b\#c} #a#b#c, l e n 6 = 6 len_6=6 len6=6,那么去掉 # \# # 后 abc \text{abc} abc 的长度就是 l e n 6 2 \dfrac{len_6}{2} 2len6,整个回文串 abcba \text{abcba} abcba 的长度就是 2 × l e n 6 2 − 1 = l e n 6 − 1 2\times\dfrac{len_6}{2}-1=len_6-1 2×2len6−1=len6−1,所以最后输出的是 a n s − 1 ans-1 ans−1。
时间复杂度
其实就相当于一直更新 m a x r maxr maxr,把 m a x r maxr maxr 从 0 0 0 推到底,因此时间复杂度为 O ( n ) \mathcal{O}(n) O(n)。
Code \text{Code} Code
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 1.1e7 + 5;
char a[MAXN], s[MAXN << 1];
int len[MAXN << 1];
int n, l;
void init()
{
s[0] = '$';
s[++l] = '#';
for (int i = 0; i < n; i++)
{
s[++l] = a[i];
s[++l] = '#';
}
}
void manacher()
{
int maxr = 0, mid = 0;
for (int i = 1; i <= l; i++)
{
if (i <= maxr)
{
len[i] = min(len[(mid << 1) - i], maxr - i + 1);
}
while (s[i + len[i]] == s[i - len[i]])
{
len[i]++;
}
if (i + len[i] - 1 > maxr)
{
maxr = i + len[i] - 1;
mid = i;
}
}
}
int main()
{
scanf("%s", a);
n = strlen(a);
init();
manacher();
int ans = 0;
for (int i = 1; i <= l; i++)
{
ans = max(ans, len[i]);
}
printf("%d\n", ans - 1);
return 0;
}