manacher java_Manacher 算法

给定一个字符串,求出其最长回文子串。例如:s="abcd",最长回文长度为 1;

s="ababa",最长回文长度为 5;

s="abccb",最长回文长度为 4,即 bccb。

以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为 $O(n^2)$,效率很差。

1975 年,一个叫 Manacher 的人发明了一个算法,Manacher 算法(中文名:马拉车算法),该算法可以把时间复杂度提升到 $O(n)$。下面来看看马拉车算法是如何工作的。

算法过程分析

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:在字符串首尾及每个字符间都插入一个 "#",这样可以使得原先的奇偶回文都变为奇回文;

接着再在首尾两端各插入 "$" 和 "^",这样中心扩展寻找回文的时候会自动退出循环,不需每次判断是否越界,可参见下面代码。

上述新插入的三个字符,即 "#"、 "$" 和 "^",必须各异,且不可以与原字符串中的字符相同。

举个例子:s="abbahopxpo",转换为 s_new="$#a#b#b#a#h#o#p#x#p#o#^"。如此,s 里起初有一个偶回文 abba 和一个奇回文 opxpo,被转换为 #a#b#b#a# 和 #o#p#x#p#o#,长度都转换成了奇数。

定义一个辅助数组 int p[],其中 p[i] 表示以 i 为中心的最长回文的半径,例如:i012345678910111213141516171819202122s_new[i]$#a#b#b#a#h#o#p#x#p#o#^

p[i]11212521212121216121211

可以看出,p[i] - 1 正好是原字符串中最长回文串的长度。

接下来的重点就是求解 p 数组,如下图:

0deb0ee9305b9eedf2fbc0e06b688400.png

设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是 mx = id + p[id]。

假设我们现在求 p[i],也就是以 i 为中心的最长回文半径,如果 i < mx,如上图,那么:if (i < mx)

p[i] = min(p[2 * id - i], mx - i);

2 * id - i 为 i 关于 id 的对称点,即上图的 j 点,而 p[j]表示以 j 为中心的最长回文半径,因此我们可以利用 p[j] 来加快查找。

代码#include

#include

#include

using namespace std;

char s[1000];

char s_new[2000];

int p[2000];

int Init()

{

int len = strlen(s);

s_new[0] = '$';

s_new[1] = '#';

int j = 2;

for (int i = 0; i < len; i++)

{

s_new[j++] = s[i];

s_new[j++] = '#';

}

s_new[j++] = '^'; // 别忘了哦

s_new[j] = '\0'; // 这是一个好习惯

return j; // 返回 s_new 的长度

}

int Manacher()

{

int len = Init(); // 取得新字符串长度并完成向 s_new 的转换

int max_len = -1; // 最长回文长度

int id;

int mx = 0;

for (int i = 1; i < len; i++)

{

if (i < mx)

p[i] = min(p[2 * id - i], mx - i); // 需搞清楚上面那张图含义,mx 和 2*id-i 的含义

else

p[i] = 1;

while (s_new[i - p[i]] == s_new[i + p[i]]) // 不需边界判断,因为左有 $,右有 ^

p[i]++;

// 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,

// 这样才能更有机会执行 if (i < mx)这句代码,从而提高效率

if (mx < i + p[i])

{

id = i;

mx = i + p[i];

}

max_len = max(max_len, p[i] - 1);

}

return max_len;

}

int main()

{

while (printf("请输入字符串:"))

{

scanf("%s", s);

printf("最长回文长度为 %d\n\n", Manacher());

}

return 0;

}

测试如下:请输入字符串:abbahopxpo

最长回文长度为 5

请输入字符串:a

最长回文长度为 1

请输入字符串:aa

最长回文长度为 2

请输入字符串:abax

最长回文长度为 3

算法复杂度分析

文章开头已经提及,Manacher 算法为线性算法,即使最差情况下其时间复杂度亦为 $O(n)$,在进行证明之前,我们还需要更加深入地理解上述算法过程。

根据回文的性质,p[i] 的值基于以下三种情况得出:

(1):j 的回文串有一部分在 id 的之外,如下图:

bb90fc0f53f05ac1d05f992c5ab8882a.png

上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时 p[i] = mx - i,即紫线。那么 p[i] 还可以更大么?答案是不可能!见下图:

202966eb2c60199561f2c82e36216c36.png

假设右侧新增的紫色部分是 p[i] 可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线+两条紫线,矛盾,所以假设不成立,故 p[i] = mx - i,不可以再增加一分。

(2):j 回文串全部在 id 的内部,如下图:

f16f1468c496c1eb2b2ad3c1b3d15190.png

根据代码,此时 p[i] = p[j],那么 p[i] 还可以更大么?答案亦是不可能!见下图:

0fb32ac31f0bcec9782c913c50d2bff2.png

假设右侧新增的红色部分是 p[i] 可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故 p[i] = p[j],也不可以再增加一分。

(3):j 回文串左端正好与 id 的回文串左端重合,见下图:

87cdb11a9f9bd003b6ee3faadd0e78a9.png

根据代码,此时 p[i] = p[j] 或 p[i] = mx - i,并且 p[i] 还可以继续增加,所以需要while (s_new[i - p[i]] == s_new[i + p[i]])

p[i]++;

根据(1)(2)(3),很容易推出 Manacher 算法的最坏情况,即为字符串内全是相同字符的时候。在这里我们重点研究 Manacher() 中的 for 语句,推算发现 for 语句内平均访问每个字符 5 次,即时间复杂度为:$T_{worst}(n)=O(n)$。

同理,我们也很容易知道最佳情况下的时间复杂度,即字符串内字符各不相同的时候。推算得平均访问每个字符 4 次,即时间复杂度为:$T_{best}(n)=O(n)$。

综上,Manacher 算法的时间复杂度为 $O(n)$。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值