【数学】中国剩余定理

给定 n n n 个正整数 a i a_i ai n n n 个非负整数 b i b_i bi,求解关于 x x x 的线性同余方程组:
{ x ≡ b 1 ( m o d a 1 ) x ≡ b 2 ( m o d a 2 ) ⋯ x ≡ b n ( m o d a n ) \begin{cases} x\equiv b_1\pmod {a_1}\\ x\equiv b_2\pmod {a_2}\\ \cdots\\ x\equiv b_n\pmod {a_n}\\ \end{cases} xb1(moda1)xb2(moda2)xbn(modan)
其中 ∀ i , j ∈ [ 1 , n ] , i ≠ j \forall i,j\in[1,n],i\ne j i,j[1,n],i=j 满足 a i , a j a_i,a_j ai,aj 互质。

首先令 m = ∏ i = 1 n a i m=\prod\limits_{i=1}^{n}a_i m=i=1nai

如果有一个解 x 1 x_1 x1,那么通解就是 x = x 1 + t m x=x_1+tm x=x1+tm t t t 为整数)。

所以我们只需要求出最小解即可,那么这个最小解一定 < m < m <m

中国剩余定理( C h i n e s e   R e m a i n d e r   T h e o r e m , C R T \rm Chinese\ Remainder\ Theorem, CRT Chinese Remainder Theorem,CRT)给出了构造解的方法:

x = ( ∑ i = 1 n b i m i M i )   m o d   m x=(\sum\limits_{i=1}^n b_im_iM_i)\bmod m x=(i=1nbimiMi)modm

其中 m i = m a i m_i=\dfrac{m}{a_i} mi=aim M i M_i Mi m i m_i mi 在模 a i a_i ai 意义下的逆元。

∀ i , j ∈ [ 1 , n ] , i ≠ j \forall i,j\in[1,n],i\ne j i,j[1,n],i=j
b j m j M j ≡ b j m a j M j ≡ b j a 1 a 2 ⋯ a i ⋯ a n a j M j ≡ b j ⋅ 0 ⋅ M j ≡ 0 ( m o d a i ) \begin{aligned} b_jm_jM_j &\equiv b_j\dfrac{m}{a_j}M_j\\ &\equiv b_j\dfrac{a_1 a_2\cdots a_i\cdots a_n}{a_j}M_j\\ &\equiv b_j\cdot 0\cdot M_j\\ &\equiv 0 \pmod {a_i} \end{aligned} bjmjMjbjajmMjbjaja1a2aianMjbj0Mj0(modai)
∀ i ∈ [ 1 , n ] \forall i\in[1,n] i[1,n]
b i m i M i ≡ b i ( m i M i ) ≡ b I ( m i m i − 1 ) ≡ b i ⋅ 1 ≡ b i ( m o d a i ) \begin{aligned} b_im_iM_i &\equiv b_i(m_iM_i)\\ &\equiv b_I(m_im_i^{-1})\\ &\equiv b_i\cdot 1\\ &\equiv b_i \pmod {a_i} \end{aligned} bimiMibi(miMi)bI(mimi1)bi1bi(modai)
所以 ∀ i ∈ [ 1 , n ] \forall i\in[1,n] i[1,n]
∑ i = 1 n b i m i M i ≡ ∑ j = 1 , j ≠ i n b j m j M j + b i m i M i ≡ 0 + b i ≡ b i ( m o d a i ) \begin{aligned} \sum\limits_{i=1}^n b_im_iM_i &\equiv \sum\limits_{j=1,j\ne i}^n b_jm_jM_j+b_im_iM_i\\ &\equiv 0+b_i\\ &\equiv b_i \pmod {a_i} \end{aligned} i=1nbimiMij=1,j=inbjmjMj+bimiMi0+bibi(modai)
这就是一组满足条件的解了。

接下来证明在模 m m m 的意义下只有一个解。

假设有 x ≡ y ( m o d m ) x\equiv y\pmod m xy(modm),那么 ∀ i ∈ [ 1 , n ] \forall i\in[1,n] i[1,n],有

x ≡ x   m o d   m ≡ y ( m o d a i ) \begin{aligned}x &\equiv x\bmod m\\ &\equiv y \pmod {a_i} \end{aligned} xxmodmy(modai)

所以 x x x y y y 是同一个解。

时间复杂度为 O ( n log ⁡ n ) \mathcal{O}(n\log n) O(nlogn)

P1495 【模板】中国剩余定理(CRT)/曹冲养猪

Code \text{Code} Code

//18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
typedef long long ll;
using namespace std;

const int MAXN = 15;

ll x, y;

void exgcd(ll a, ll b)
{
	if (!b)
	{
		x = 1, y = 0;
		return;
	}
	exgcd(b, a % b);
	ll tmp = x;
	x = y;
	y = tmp - a / b * y;
}

ll inv(ll a, ll p)
{
	exgcd(a, p);
	x = (x % p + p) % p;
	return x;
}

ll qmul(ll a, ll b, ll p)
{
	ll base = a, ans = 0;
	while (b)
	{
		if (b & 1)
		{
			ans = (ans + base) % p;
		}
		base = (base + base) % p;
		b >>= 1;
	}
	return ans;
}

int a[MAXN], b[MAXN];

ll CRT(int n)
{
	ll m = 1;
	for (int i = 1; i <= n; i++)
	{
		m *= a[i];
	}
	ll ans = 0;
	for (int i = 1; i <= n; i++)
	{
		ll mi = m / a[i];
		ll Mi = inv(mi, a[i]);
		ans = (ans + qmul(b[i], qmul(mi, Mi, m), m)) % m;
	}
	return ans;
}

int main()
{
	int n;
	scanf("%d", &n);
	for (int i = 1; i <= n; i++)
	{
		scanf("%d%d", a + i, b + i);
	}
	printf("%lld\n", CRT(n));
	return 0;
}

双倍经验:P3868 [TJOI2009] 猜数字

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值