【数学】欧拉定理

定理内容

gcd ⁡ ( a , m ) = 1 \gcd(a,m)=1 gcd(a,m)=1,则 a φ ( m ) ≡ 1 ( m o d p ) a^{\varphi(m)}\equiv 1\pmod p aφ(m)1(modp)

定理证明

构造一个模 m m m 意义下的简化剩余系: { r 1 , r 2 , … , r φ ( m ) } \{r_1,r_2,\dots,r_{\varphi(m)}\} {r1,r2,,rφ(m)}

因为 gcd ⁡ ( a , m ) = 1 \gcd(a,m)=1 gcd(a,m)=1,所以 { a r 1 , a r 2 , … , a r φ ( m ) } \{ar_1,ar_2,\dots,ar_{\varphi(m)}\} {ar1,ar2,,arφ(m)} 仍是一个模 m m m 意义下的简化剩余系。

∴ r 1 × r 2 × ⋯ × r φ ( m ) ≡ a r 1 × a r 2 × ⋯ × a r φ ( m ) ( m o d m ) ∏ i = 1 φ ( m ) r i ≡ a φ ( m ) × ∏ i = 1 φ ( m ) r i ( m o d m ) ∵ ∀ i , gcd ⁡ ( r i , m ) = 1 ∴ a φ ( m ) ≡ 1 ( m o d m ) \therefore r_1\times r_2\times\cdots\times r_{\varphi(m)}\equiv ar_1\times ar_2\times\cdots\times ar_{\varphi(m)}\pmod m\\ \prod\limits_{i=1}^{\varphi(m)}r_i\equiv a^{\varphi(m)}\times\prod\limits_{i=1}^{\varphi(m)}r_i\pmod m\\ \because \forall i,\gcd(r_i,m)=1\\ \therefore a^{\varphi(m)}\equiv 1\pmod m r1×r2××rφ(m)ar1×ar2××arφ(m)(modm)i=1φ(m)riaφ(m)×i=1φ(m)ri(modm)i,gcd(ri,m)=1aφ(m)1(modm)
证毕。

容易发现当 m ∈ P m\in\mathbb{P} mP 时, φ ( m ) = m − 1 \varphi(m)=m-1 φ(m)=m1,上式就变成了我们熟悉的 费马小定理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值