random函数概总

    • numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组。

  1. import numpy as np 
  2.  
  1. #无参  
  2. np.random.rand()#生成生成[0,1)之间随机浮点数  

  1. #一个参数  
  2. np.random.rand(1)#array([.]) [ 0.09256063]
  3. np.random.rand(6)#生成一个的一维数组 [ 0.60815869  0.73878681  0.03048955  0.98884117  0.38879514  0.09276253]


  1. #两个参数  
  2. np.random.rand(2,6)#生成2x6的二维数组  [[ 0.07912478  0.00405205  0.27662169]
            [ 0.48325782  0.43314627  0.42481872]]
  3. #np.random.rand((2,3))#报错,参数必须是整数,不能是元组 


    • numpy.random.randn(d0, d1, ..., dn):生成一个浮点数或N维浮点数组,取数范围:正态分布的随机样本

  1. import numpy as np  
  2. #无参  
  3. np.random.randn()#1.4872544578730051,不一定是[0,1)之间的随机数  
  4. #一个参数  
  5. np.random.randn(1)  
  6. >>[-1.8291329]
  7. np.random.randn(6)#生成一维数组 
  8. >>[-1.99023487 -0.09193998 -0.40957812  0.44944641  0.18953369  0.59727101] 
  9. #两个参数  
  10. np.random.randn(2,3)#生成2x3数组 
  11. >> [[ 0.6096645   0.46733013 -0.16198441]
    [ 1.1277741   1.62034202  3.14673788]]
  12. #np.random.randn((2,3))#报错,参数必须是整数  


    • numpy.random.standard_normal(size=None):生产一个浮点数或N维浮点数组,取数范围:标准正态分布随机样本
    import numpy as np  
  1. #numpy.random.standard_normal(size=None)  
  2. #size为整数  
  3. np.random.standard_normal(6)
  4. >>[ 0.33158117  1.15557637 -2.65673171 -0.03660708 -0.6472354  -0.83355466]
  5. #size为整数序列  
  6. np.random.standard_normal((2,3))  
  7. >>[[-1.22406999 -0.0250229  -1.13810308]
     [-0.54879572  0.35923879 -0.33808103]]
  8. np.random.standard_normal([2,3])
  9. >>[[ 0.6870471  -1.21055061  1.44049352]
     [ 0.9092522   1.82887134 -1.18624863]]  


    • numpy.random.randint(low, high=None, size=None, dtype='l'):生成一个整数或N维整数数组,取数范围:若high不为None时,取[low,high)之间随机整数,否则取值[0,low)之间随机整数。

  1. #numpy.random.randint(low, high=None, size=None, dtype='l')  
  2. import numpy as np  
  3. #low=4 
  4. np.random.randint(4)#生成一个[0,3]范围随机整数
  5. >>3  
  6. #low=2,size=4  
  7. np.random.randint(6,size=4)
  8. >>[4 3 5 4]  
  9. #low=4,high=10  
  10. np.random.randint(4,10)#生成一个[4,10)之间一个随机整数 
  11. >>5 
  12. #low=4,high=10,size=5  
  13. np.random.randint(4,10,size=5)#生成一维整数数组  
  14. >>[6 4 9 6 9]
  15. #size为整数元组  
  16. np.random.randint(10,size=(2,3))#生成一个2x3整数数组,取数范围:[0,10)随机整数  
  17. >>[[3 8 4]
     [2 1 6]]
  18. np.random.randint(3,10,(2,3))#生成一个2x3整数数组,取值范围:[3,10)随机整数  
  19. >>[[8 7 4]
     [3 6 7]]


    • numpy.random.random_integers(low, high=None, size=None):生成一个整数或一个N维整数数组,取值范围:若high不为None,则取[low,high]之间随机整数,否则取[1,low]之间随机整数。

  1. #numpy.random.random_integers(low, high=None, size=None)  
  2. import numpy as np  
  3. #low=4  
  4. np.random.random_integers(2)#生成一个[1,4]之间随机整数  
  5. >>4
  6. #low=2、size=5  
  7. np.random.random_integers(2,size=5)
  8. >>[1,2,1,1,2]
  9. #low=2、high=6  
  10. np.random.random_integers(2,6)#生成一个[2,6]之间随机整数 
  11. >>3 
  12. #low=2、high=6、size=5  
  13. np.random.random_integers(2,6,size=5)#生成一个一维整数数组组  
  14. #size为整数元组  
  15. np.random.random_integers(6,size=(2,3))#生成一个2x3数组,取数范围:[1,6]随机整数  
  16. >>[[5 6 5]
     [5 4 5]]
  17. np.random.random_integers(6,10,(2,3))#生成一个2x3数组,取数范围:[6,10]随机整数  
  18. >>[[ 9  7  8]
     [ 8  9 10]]


    • numpy.random.random_sample(size=None):生成一个[0,1)之间随机浮点数或N维浮点数组。
  1. #numpy.random.random_sample(size=None)  
  2. import numpy as np  
  3. #size=None  
  4. np.random.random_sample()#生成一个[0,1)之间随机浮点数  
  5. #size=5  
  6. np.random.random_sample(2)#生成shape=5的一维数组  
  7. #size为整数元组  
  8. np.random.random_sample((2,))#等同np.random.random_sample(2)  
  9. np.random.random_sample((2,3))#生成2x3数组  
  10. np.random.random_sample((3,2,2))#3x2x2数组  由三个2行2列的2维数组组成的高维数组
  11. >>[[[ 0.55335277  0.39392416]
      [ 0.04549739  0.50686357]]

  12.  [[ 0.21971058  0.08189746]
      [ 0.16759733  0.7760967 ]]

     [[ 0.82459825  0.43088198]
      [ 0.1731624   0.95072647]]]


    • numpy.random.choice(a, size=None, replace=True, p=None):从序列中获取元素,若a为整数,元素取值为np.range(a)中随机数;若a为数组,取值为a数组元素中随机元素。

  1. #numpy.random.choice(a, size=None, replace=True, p=None)  
  2. import numpy as np  
  3. #a为整数,size为None  
  4. np.random.choice(2)#生成一个range(2)中的随机数  
  5. #a为整数,size为整数  
  6. np.random.choice(2,2)#生成一个shape=2一维数组  
  7. #a为整数,size为整数元组  
  8. np.random.choice(5,(2,3))#生成一个2x3数组  
  9. #a为数组,size为None  
  10. np.random.choice(np.array(['a','b','c','f']))#生成一个np.array(['a','b','c','f']中随机元素  
  11. #a为数组,size为整数  
  12. np.random.choice(5,(2,3))#生成2x3数组  
  13. #a为数组,size为整数元组  
  14. np.random.choice(np.array(['a','b','c','f']),(2,3))#生成2x3数组  
  15. #p参数:可以理解成a中元素出现的概率,p的长度和a的长度必须相同,且p中元素之和为1,否则报错  
  16. #np.random.choice(2,p=[1])#报错,a和p长度不一致  
  17. np.random.choice(5,p=[0,0,0,0,1])#生成的始终是4  
  18. np.random.choice(5,3,p=[0,0.5,0.5,0,0])#生成shape=3的一维数组,元素取值为1或2的随机数  


    • numpy.random.shuffle(x):对X进行重排序,如果X为多维数组,只沿第一条轴洗牌,输出为None。
    #numpy.random.shuffle(x)  
  1. import numpy as np  
  2. list1 = [1,2,3,4,5]  
  3. np.random.shuffle(list1)#输出None  
  4. list1#[1, 2, 5, 3, 4],原序列的顺序也被修改  
  5. arr = np.arange(9).reshape(3,3)  
  6. np.random.shuffle(arr)#对于多维数组,只沿着第一条轴打乱顺序  


    • numpy.random.permutation(x):与numpy.random.shuffle(x)函数功能相同,两者区别:peumutation(x)不会修改X的顺序

  1. #numpy.random.permutation(x)  
  2. import numpy as np  
  3. #x=5  
  4. np.random.permutation(5)#生成一个range(5)随机顺序的数组  
  5. #x为列表或元组  
  6. list1 = [1,2,3,4]  
  7. np.random.permutation(list1)#array([2, 1, 4, 3])  
  8. #list1#[1, 2, 3, 4]  
  9. #x为数组  
  10. arr = np.arange(9)  
  11. np.random.permutation(arr)  
  12. arr2 = np.arange(9).reshape(3,3)  
  13. np.random.permutation(arr2)#对于多维数组,只会沿着第一条轴打乱顺序

   numpy.random.uniform(low,high,size)

  1. 功能:从一个均匀分布[low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high.
    参数介绍: 
        low: 采样下界,float类型,默认值为0;
        high: 采样上界,float类型,默认值为1;
        size: 输出样本数目,为int或元组(tuple)类型,例如,size=(m,n,k), 则输出m*n*k个样本,缺省时输出1个值。
        返回值:ndarray类型,其形状和参数size中描述一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值