可解释性(1)—— lstm可视化工具LSTMVis

LSTMVis是一个用于LSTM隐藏状态可视化和可解释性的工具,通过对隐藏状态沿时间步的变化分析,揭示模型的学习模式。通过设定阈值和时间步范围,可以筛选出特定模式并找出相似文本片段。尽管在某些任务中效果有限,但其为理解深度学习模型提供了有价值的洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

深度模型成绩斐然,然而它就像一个黑箱子一样捉摸不透,使用者不知道它到底学到了些什么,也不知道它有什么凭据作出那样的预测,更不知道如何根据bad case去调特征,虽然能总结出几类bad case,bad case也有一些特定的pattern,但对样本作出相应的调整总是有点隔靴搔痒,难解其中真谛。

伟大的研究者们开始进行可解释性研究,针对LSTM,目前有词向量的聚类可视化,hidden state的聚类可视化,LSTMVis[1]这文章是在hidden state上做文章啦,代码和在线展示系统: http://lstm.seas.harvard.edu

二、该论文主要做以下研究:

          1. 每个hidden state沿着time step有着怎样的变化规律?

          2. 对于特定time step范围的特定hidden state变化模式,与其相似的变化模式,文本是否也包含相似的信息?

三. 该论文的做法:

          1. 画了一个多折线图,横坐标是time step,纵坐标是hidden state的值,一条折线代表一个hidden state沿着time step的变化,所以如果你的h

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值