知识图谱_关系抽取_文献笔记(二)

本文探讨了如何使用Sub-Tree Parse减少句子内的噪音,并通过entity-wise attention捕获关键信息。文章介绍了如何运用迁移学习在实体类型分类预训练后提升关系分类任务的模型性能。实验结果显示,STP、entity-wise attention和迁移学习方法在关系抽取中表现出优越性。
摘要由CSDN通过智能技术生成

本文介绍一篇18年EMNLP的文章Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learning。对知识图谱关系抽取前世了解一下,再来看今天的文章哦。还需了解一下用神经网络做依存句法分析

一、问题描述

这篇文章是做知识图谱中的关系抽取的,创新点有三个:

1. 通过Sub-Tree Parse (STP)来移除句子内的噪音的,还可以降低句子长度。

2. 通过entity-wise attention来帮助句子捕捉句子内的重点的。

3. 通过迁移学习,在entity type分类上预训练后,再迁移到关系分类的任务上帮助模型提高鲁棒性。

看不懂没关系,下面会一一介绍。

二、什么是句子内的噪音

先来看一个句子:

[It is no accident that the main event will feature the junior welterweight champion miguel cotto, a puerto rican, against Paul Malignaggi, an Italian American from Brooklyn.]

其实光看橘色的部分就知道Paul Malignaggi出生在Brooklyn,也就是/people/person/place of birth关系,那么除了橘色部分的其他单词都是句子内噪音啦,多余的哎!

三、为什么从实体种类识别迁移学习有用呢

先来看一个句子:

[Alfead Kahn, the Cornell-University economist who led the fight to deregulate airplanes.]

如果不知道Alfead Kahn是个人,不知道Cornell-University是公司,还不好预测关系呢。

四、模型架构

可以看到先将句子用 STP处理以后,将其转化为词向量后,输入到双向GRU内转化为hidden state,然后利用entity-wise attention+Hierarchical-level Attention(Word-level Attention和Sentence-level Attention的综合)后将包含一个实体对的所有句子转化为一个向量,然后将这个向量经过全连接和softmax就可以做entity type分类或者关系分类了。

1.Sub-Tree Parse (STP)

先画出句子的依存句法关系树,找到两个实体最近的共同祖先(非自身),以该祖先为根将子句法树提取出来即可,则该子树的单词啦,单词位置啦都可以作为输入了,我觉得这招很高!

举个例子,看上图,有个句子:

[In 1990, he lives in Shanghai, China.]

实体为Shanghai和China,看图中他们的共同祖先为in,则橘色部分in Shanghai, China就被提取出来,这三个单词的word和position就要被换成词向量输入到双向GRU中了。

这个方法比Shortest Dependency Path (SDP)好,在SDP中,上述句子因为Shanghai和China在句法树中直接相连,则最短嘛,就是提取出Shanghai, China。没有“in”了,但in这个单词才是预测这个关系最重要的单词,但是被SDP忽略了,但是在STP中就被保留了。

2.word an position embedding

包含一个实体对的所有句子叫包,一个包内的第i条句子的第

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值