推荐系统实战(一)——FM原理

在推荐系统及广告系统中,ctr预估是极其重要的一部分,解决该问题的经典模型分别为:LR、gbdt、xgboost、FM、wide&deep、deepFM、DCN、xdeepFM、DIN、DIEN、DISN。本文先介绍FM(因子分解机)算法。

一、 FM原理:

除了特征的线性组合,FM主要是引入了二阶特征交叉,通过将特征映射为隐向量,求两个特征对应的隐向量的内积完成二阶特征交叉,无需做人工的特征工程。

正向传播:

                                                 \hat{y}:=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle x_{i} x_{j}

                                                 y_{pred} = \sigma (\hat{y})

                                                 loss = -log(\sigma (y_{true}\hat{y}))

        其中,\mathbf{v}_{j}为第j个特征对应的隐向量,loss公式的解释为:sigmoid函数的loss的计算方式

时间复杂度优化:

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值