使用ChatGLM分析文档试用

       最近了解一下Chatgpt-4到底发展到什么程度了,于是对知名的国内外几个AI平台都进行了初步试用。写几篇文章介绍一下试用心得。今天我先总结一下智谱清言,也就是国内的ChatGLM,聊天功能感觉接近Chatgpt-3.5,而我重点使用其对文档的解析和实施训练能力。

        目前只支持PDF文档,我就把前些天翻译的《保障软件供应链安全 SBOM推荐实践指南》PDF传给它,传上到现实下面界面。

     可以看到上传文档成功之后,AI首先把文章核心观点给提取出来了,我读了一下这段话,感觉提炼的还是非常不错的。语句通顺,内容清晰,观点准确到位,值得称赞。上面有些提示问题,但是我并没有使用例子问题提问,而是采用我关注的问题提问,大家看看结果。

       问题1:SBOM具有有什么用途(故意多打了一个字,看看容错能力啊)

回答:

       感觉回答的还是非常不错的,4个主要用途,比较重要。 那我要继续追问一下。

问题2: SBOM具有什么用途,能更详细一点吗?

         AI平台以非常快的速度,响应时间估计大概在1-2秒回答上面的问题,回答的也非常准确。这种总结提炼性的问题,我就不再追问了,我想问一个开放性的问题,答案不仅仅来自于文档本身。

问题3:2024年SBOM有什么发展趋势呢

回答:

明显,这个问题答案并非可以从文章中找到。AI平台从其训练的历史中总结给出了答案,从答案上来看,其训练的数据还是非常新的。能够给出比较准确的趋势判断。那既然具有结合互联网上训练的数据,我问一个带有主观判断的问题,看看如何回答。

问题4:那您如果作为一个SCA工具厂商,该如何做呢

回答:

感觉回答的也非常不错,站在在第一人称的角度上,从6个方面可以在工具开发上可以做的事情。非常棒!

那我问一个更具有主观性的问题吧。

问题5:我想让我们的SCA产品在SBOM技术参数支持上更具有竞争力,您能给我一些建议吗

回答:

   这个回答我感觉太好了,其实也是我作为应用安全从事人员判断的结果,AI平台都能给出来了,我这里给AI平台文档解析和互联网搜索训练结合在一起的能力,打9.9分,留0.1让他们回答问题时更深入展开一些。我表示出希望给我更深一步的判断答案。

问题6:我感觉您这个问题回答的有点欠缺,您能再深入的分析一下吗

回答:

  这个回答,它是从文档中又找到了一个点来回答我的问题。感觉给出这个点也挺好的。可能略显单薄,它又建议我去参考业界最佳实践,不错,答案非常完美。

       通过上面6个问题,我们大概能够判断出AI平台现在发展的水平超出了我们的想象,文档分析结合互联网搜索,结合模型训练,能够帮助我们大幅度提升工作效率。我还在找是否有可以训练软件威胁建模的工具,也看了Chatgpt-4,给出的几个模型,感觉自己建立模型要投入大量的时间,还需要付费,再看看是否可以有更好的方法。感兴趣的朋友们可以一套探讨。

(结束)

<think>好的,我现在需要帮助用户了解如何获取DeepSeek的API接口或开源预训练模型。首先,我要回想之前的对话历史。用户之前询问过使用Python调用DeepSeek制作本地蒸馏模型,我给出了代码示例,但当时假设DeepSeek是基于类似BERT的架构,可能需要确认实际情况。 现在用户的问题更具体,是关于如何获取DeepSeek的API接口或开源模型。首先,我需要确定DeepSeek是否有公开的API或开源模型。根据当前的信息,可能DeepSeek并没有完全开源,或者需要特定权限才能访问。因此,我应该建议用户查阅官方文档或联系官方支持,这是最可靠的方式。 接下来,用户可能的真实需求是想使用DeepSeek作为教师模型来进行知识蒸馏,但可能遇到获取模型的困难。因此,我需要提供替代方案,比如使用其他开源模型如LLaMA、GPT-2等,或者建议他们申请API访问权限。 需要注意的是,用户可能在学术研究或商业项目中使用,因此必须提醒他们遵守使用协议和法律法规,特别是数据隐私和知识产权方面的问题。此外,用户可能对如何申请API或加入等待列表不太清楚,需要给出具体的步骤,比如访问官方网站、查找开发者文档等。 同时,用户可能希望了解如何合法获取模型,避免侵权,所以需要强调遵守官方规定的重要性。如果DeepSeek没有公开的模型,可能需要等待其开源,或者寻找类似的替代模型。 总结回答结构时,应该分点说明:官方途径、API申请、替代方案、注意事项。确保信息准确,避免猜测,并建议用户通过官方渠道获取最新信息。同时,保持回答的专业性和帮助性,提供可能的解决方案,而不仅仅是拒绝回答。</think>以下是关于获取DeepSeek模型资源的详细信息整理: ### 一、官方途径(推荐优先尝试) 1. **官网查询** 访问DeepSeek官方网站(deepseek.ai),通常在: - `开发者文档` 或 `API文档` 板块 - `模型下载` / `开源仓库` 栏目 - 技术博客中的模型发布公告 2. **开源平台** 在以下平台搜索官方账号: - GitHub:`github.com/deepseek-ai`(示例地址,需验证) - Hugging Face Hub:`huggingface.co/deepseek-ai` - ModelScope:`modelscope.cn/organization/deepseek` 3. **API接口申请** 标准流程一般包含: ```bash 1. 注册开发者账号 2. 创建API Key(通常需要企业认证) 3. 查看计费标准(免费试用额度可能有限) 4. 调用RESTful接口示例: POST https://api.deepseek.ai/v1/completions Headers: {"Authorization": "Bearer <API_KEY>"} Body: {"prompt": "your input", "max_tokens": 200} ``` ### 二、替代方案(若暂时无法获取) 1. **同类开源模型推荐** ```python # 代码示例:使用替代模型 from transformers import AutoModelForCausalLM # 中文大模型 MODEL_OPTIONS = { "Qwen": "Qwen/Qwen1.5-7B", # 通义千问 "ChatGLM3": "THUDM/chatglm3-6b", # 清华智谱 "InternLM": "internlm/internlm2-7b" } # 英文大模型 ALTERNATIVES = { "Llama3": "meta-llama/Meta-Llama-3-8B", "Mistral": "mistralai/Mistral-7B-v0.1" } ``` 2. **模型适配技巧** - 使用LoRA等微调方法适配小模型 ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05 ) model = get_peft_model(base_model, lora_config) ``` ### 三、注意事项 1. **合规要求** - 仔细阅读模型许可协议(如Llama系列需Meta审批) - 遵守《生成式人工智能服务管理暂行办法》等法规 - 数据隐私保护(GDPR/个人信息保护法) 2. **技术准备** - 硬件需求:7B模型需~20GB显存(FP16精度) - 推荐部署方式: ```mermaid graph TD A[模型选择] --> B{规模} B -->|7B以下| C[单卡部署] B -->|7B+| D[多卡并行] D --> E[模型并行] D --> F[流水线并行] ``` 建议持续关注DeepSeek官方动态,同时可以: 1. 订阅其开发者邮件列表 2. 参官方技术社区(Discord/Slack等) 3. 关注arXiv等论文平台的最新研究成果 如果您的项目有明确应用场景,可直接联系DeepSeek商务合作部门(business@deepseek.ai)获取定制化支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

manok

你的打赏很重要

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值