Python十大数据结构

如果你还处于Python入门阶段,通常只需掌握 list 、 tuple 、 set 、 dict 这四类数据结构,做到灵活使用即可。

然而,随着学习的深入,平时遇到实际场景变复杂,很有必要去了解Python内置的更加强大的数据结构 deque 、 heapq 、 Counter 、 OrderedDict 、 defaultDict 、 ChainMap ,掌握它们,往往能更加高效的实现功能。
本文主要介绍后六类数据结构

1 deque

基本用法 deque 双端队列,基于list优化了列表两端的增删数据操作。基本用法:

from collections import deque
In : d = deque([3,2,4,0])
In : d.popleft() # 左侧移除元素,O(1)时间复杂度
Out: 3

In : d.appendleft(3) # 左侧添加元素,O(1)时间复杂度
In : d
Out: deque([3, 2, 4, 0])

使用场景 list左侧添加删除元素的时间复杂度都为O(n),所以在Python模拟队列时切忌使用list,相反使用deque双端队列非常适合频繁在列表两端操作的场景。但是,加强版的deque牺牲了空间复杂度,所以嵌套deque就要仔细trade-off:

In : sys.getsizeof(deque())
Out: 640

In: sys.getsizeof(list())
Out: 72

实现原理 cpython实现deque使用默认长度64的数组,每次从左侧移除1个元素,leftindex加1,如果超过64释放原来的内存块,再重新申请64长度的数组,并使用双端链表block管理内存块。

2 Counter

基本用法 Counter一种继承于dict用于统计元素个数的数据结构,也称为bag 或 multiset. 基本用法:

from collections import Counter
In: c = Counter([1,3,2,3,4,2,2]) # 统计每个元素的出现次数
In: c
Out: Counter({1: 1, 3: 2, 2: 3, 4: 1})

除此之外,还可以统计最常见的项,如统计第1最常见的项,返回元素及其次数的元组

In: c.most_common(1)
Out: [(2, 3)]

使用场景 基本的dict能解决的问题就不要用Counter,但如遇到统计元素出现频次的场景,就不要自己去用dict实现了,果断选用Counter.
需要注意,Counter统计的元素要求可哈希(hashable),换句话说如果统计list的出现次数就不可行,不过list转化为tuple不就可哈希了吗.
实现原理 Counter实现基于dict,它将元素存储于keys上,出现次数为values.

3 OrderedDict

基本用法 继承于dict,能确保keys值按照顺序取出来的数据结构,基本用法:

In: from collections import OrderedDict
In: od = OrderedDict({'c':3,'a':1,'b':2})
In: for k,v in od.items():
...: print(k,v)
...:
c 3
a 1
b 2

使用场景 基本的dict无法保证顺序,keys映射为哈希值,而此值不是按照顺序存储在散列表中的。所以遇到要确保字典keys有序场景,就要使用OrderedDict.
实现原理 你一定会好奇OrderedDict如何确保keys顺序的,翻看cpython看到它里面维护着一个双向链表 self.__root ,它维护着keys的顺序。既然使用双向链表,细心的读者可能会有疑问:删除键值对如何保证O(1)时间完成?
cpython使用空间换取时间的做法,内部维护一个 self.__map 字典,键为key,值为指向双向链表节点的 link . 这样在删除某个键值对时,通过__map在O(1)内找到link,然后O(1)内从双向链表__root中摘除。

4 heapq

基本用法 基于list优化的一个数据结构:堆队列,也称为优先队列。堆队列特点在于最小的元素总是在根结点:heap[0] 基本用法:

import heapq
In: a = [3,1,4,5,2,1]
In: heapq.heapify(a) # 对a建堆,建堆后完成对a的就地排序
In: a[0] # a[0]一定是最小元素
In: a
Out: [1, 1, 3, 5, 2, 4]

In: heapq.nlargest(3,a) # a的前3个最大元素
Out: [5, 4, 3]

In: heapq.nsmallest(3,a) # a的前3个最小元素
Out: [1, 1, 2]

使用场景 如果想要统计list中前几个最小(大)元素,那么使用heapq很方便,同时它还提供合并多个有序小list为大list的功能。
基本原理 堆是一个二叉树,它的每个父节点的值都只会小于或大于所有孩子节点(的值),原理与堆排序极为相似。

5 defaultdict

基本用法 defaultdict是一种带有默认工厂的dict,如果对设计模式不很了解的读者可能会很疑惑工厂这个词,准确来说工厂全称为对象工厂。下面体会它的基本用法。基本dict键的值没有一个默认数据类型,如果值为list,必须要手动创建:

words=['book','nice','great','book']
d = {}
for i,word in enumerate(words):
if word in d:
d[word].append(i)
else:
d[word]=[i] # 显示的创建一个list

但是使用defaultdict:

from collections import defaultdict
d = defaultdict(list) # 创建字典值默认为list的字典
for i,word in enumerate(words):
d[word] = i

省去一层if逻辑判断,代码更加清晰。上面defaultdict(list)这行代码默认创建值为list的字典,还可以构造defaultdict(set), defaultdict(dict)等等,这种模式就是对象工厂,工厂里能制造各种对象:list,set,dict…
使用场景 上面已经说的很清楚,适用于键的值必须指定一个默认值的场景,如键的值为list,set,dict等。
实现原理 基本原理就是调用工厂函数去提供缺失的键的值。

6 ChainMap

基本用法 如果有多个dict想要合并为一个大dict,那么ChainMap将是你的选择,它的方便性体现在同步更改。具体来看例子:

In: from collections import ChainMap
In: d1 = {'a':1,'c':3,'b':2}
In: d2 = {'d':1,'e':5}
In: dm = ChainMap(d1,d2)
In: dm
Out: ChainMap({'a': 1, 'c': 3, 'b': 2}, {'d': 1, 'e': 5})

ChainMap后返回一个大dict视图,如果修改其对应键值对,原小dict也会改变:

In: dm.maps # 返回一个字典list
Out: [{'a': 2, 'c': 3, 'b': 2, 'd': 10}, {'d': 1, 'e': 5}]

In: dm.maps[0]['d']=20 # 修改第一个dict的键等于'd'的值为20
In: dm
Out: ChainMap({'a': 2, 'c': 3, 'b': 2, 'd': 20}, {'d': 1, 'e': 5})

In: d1 # 原小dict的键值变为20
Out: {'a': 2, 'c': 3, 'b': 2, 'd': 20}

使用场景 具体使用场景是我们有多个字典或者映射,想把它们合并成为一个单独的映射,可能会说可以用update进行合并,这样做的问题就是新建了一个内存结构,除了浪费空间外,还有一个缺点就是我们对新字典的更改不会同步到原字典上。
实现原理 通过maps便能观察出ChainMap联合多个小dict装入list中,实际确实也是这样实现的,内部维护一个lis实例,其元素为小dict.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值