多尺度模板匹配(openCV实现find_scaled_shape_model)

本文介绍了如何使用OpenCV进行多尺度模板匹配,包括尺度空间离散化和匹配过程,通过实验结果与Halcon的匹配效果进行对比,探讨了参数设置对匹配结果的影响。
摘要由CSDN通过智能技术生成

        一直在写基于形状的模板匹配(仿照halcon,cognex),我们知道任意的二维仿射变换可以分解为以下几种变换:缩放变换(用不同比例因子Sx_{},Sy分别对图像X轴Y轴进行缩放)、倾斜变换(X轴保持固定的情况下,Y轴相对于X轴旋转角度θ)、旋转变换(X轴Y轴同时旋转角度Φ),最后是平移变换(Tx,Ty))^{T},写到一起就是下面的公式:

        在前面的文章中我们已经解决了旋转的问题,接下来解决缩放的问题,首先是尺度空间离散化,仿照旋转需要计算出每层金字塔的比例步长,这里给出比例步长的计算公式,如下图(来源于MVTec公司的一篇专利)是一个钥匙的模型,c是模型的参考点(重心)

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值