点云
文章平均质量分 60
翟羽嚄
这个作者很懒,什么都没留下…
展开
-
python open3d 读取npy格式点云 并保存为pcd格式
python open3d 读取npy格式点云 并保存为pcd格式。原创 2024-01-09 13:35:49 · 620 阅读 · 0 评论 -
点云学习笔记28——open3d的安装及使用
参考:1、原创 2023-02-28 17:29:55 · 1344 阅读 · 0 评论 -
点云学习笔记27——C/C++语言版本 pcl 基础代码
【代码】点云学习笔记27——C/C++语言版本 pcl 基础代码。原创 2022-09-02 18:00:21 · 362 阅读 · 0 评论 -
点云学习笔记26——基于深度图的点云聚类方法
参考:源码:直接上效果图。原创 2022-07-11 09:41:55 · 428 阅读 · 0 评论 -
点云学习笔记24——使用Kdtree加速的DBSCAN进行点云聚类
在点云数据分析中,我们经常需要对点云数据进行分割,提取感兴趣的部分。聚类是点云分割中的一类方法(其他方法有模型拟合、区域增长、基于图的方法、深度学习方法等)。DBSCAN 是一种基于密度的聚类算法,具有抗噪声、无需指定类别种数、可以在空间数据中发现任意形状的聚类等优点,适用于点云聚类。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。...原创 2022-06-27 13:42:26 · 1559 阅读 · 0 评论 -
点云学习笔记19——使用pcl将bin文件转化为pcd文件
从KITTL下载的数据是二进制bin格式,但是pcl似乎只能读取pcd文件,为了可视化,先将bin文件转换为pcd文件。源码参考1、https://www.manongdao.com/article-955482.html2、https://blog.csdn.net/qq_35491306/article/details/82903371...原创 2022-02-09 14:34:19 · 2226 阅读 · 2 评论 -
点云学习笔记17——求点云的最小包围盒
点云学习笔记17——求点云的最小包围盒源码#include <string>#include <iostream>#include <Eigen/Core>#include <pcl/io/pcd_io.h>#include <pcl/point_cloud.h>#include <pcl/point_types.h>#include <pcl/common/transforms.h>#include &l原创 2022-02-09 01:53:47 · 1386 阅读 · 2 评论 -
点云学习笔记16——pcl点云可视化
pcl点云可视化类一:pcl::visualization::PCLVisualizer基础显示功能:显示点云、网格、设置颜色、连线效果图高级功能:设置回掉函数进行交互、显示区域分割按键事件点选取事件效果图区域选取事件显示区域分割类二:pcl::visualization::CloudViewer可视化(Visualization)是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕显示出来,并且进行交互处理的理论、方法和技术。PCL中pcl_visualization库中提供了可视化相关的数原创 2022-02-09 01:30:05 · 7694 阅读 · 0 评论 -
点云学习笔记15——PCL常用的基础代码
点云学习笔记15——PCL基础命名规范常用代码1、时间计算2、pcl::PointCloud::Ptr和pcl::PointCloud的两个类相互转换3、如何查找点云的x,y,z的极值?4、知道需要保存点的索引,从原点云中拷贝点到新点云5、如何从点云里删除和添加点6、 链接两个点云字段(两点云大小必须相同)7、如何从点云中删除无效点8、计算质心9、从网格提取顶点(将网格转化为点)资料汇总主要参考《点云库PCL学习教程—朱德海》以及github上发现了一个人总结的书中的笔记命名规范源文件.cpp 结尾原创 2022-02-07 17:36:43 · 1783 阅读 · 1 评论 -
点云学习笔记13——PointNet++算法+代码运行
点云学习笔记13——PointNet++算法+代码运行参考:PointNet++ 论文及代码解读原创 2021-10-20 10:55:10 · 1596 阅读 · 0 评论 -
点云学习笔记12——PointNet算法+代码运行
参考:【3D计算机视觉】从PointNet到PointNet++理论及pytorch代码原创 2021-10-20 10:53:24 · 1660 阅读 · 0 评论 -
点云学习笔记11——VoxelNet算法+代码运行
参考:论文阅读:VoxelNet(3D-detection)+代码复现二、代码复现代码地址:https://github.com/qianguih/voxelnet2.1、环境准备安装linux虚拟机参考:linux下安装pytorch原创 2021-10-07 18:02:08 · 6351 阅读 · 20 评论 -
点云学习笔记10——点云与图像目标检测MV3D算法
点云学习笔记10——点云与图像目标检测MV3D算法算法整体思路代码阅读参考文章:论文题目:Multi-View 3D Object Detection Network for Autonomous Driving开源代码代码:https://github.com/leeyevi/MV3D_TF算法整体思路这个算法主要思路是利用点云与摄像头进行融合感知,点云是进行了一个鸟瞰图和正视图的投影,再利用图像方面的知识进行检测3D目标。多视图的融合后再进行多传感器的融合。代码阅读参考文章:https:/原创 2021-09-04 23:48:12 · 2392 阅读 · 0 评论 -
点云学习笔记9——python pcl可视化点云数据
代码import numpy as npimport pcl.pcl_visualization# lidar_path 指定一个kitti 数据的点云bin文件就行了points = np.fromfile(str('um_000000.bin'), dtype=np.float32, count=-1).reshape([-1, 4])# 这里对第四列进行赋值,它代表颜色值,根据你自己的需要赋值即可;points[:, 3] = 3329330# PointCloud_PointXYZ原创 2021-09-03 16:17:43 · 1741 阅读 · 0 评论 -
点云学习笔记8——python pcl将点云数据转换成正视图
点云学习笔记7——python pcl将点云数据转换成正投影原始点云图效果:转换代码参考原始点云图效果:原始bin文件:转换代码import numpy as npimport pclfrom mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltdef lidar_to_2d_front_view(points, v_res,原创 2021-09-03 16:14:05 · 1635 阅读 · 0 评论 -
点云学习笔记7——python pcl将点云数据转换成俯视图(鸟瞰图)
环境安装可以参考我另外一篇文章:点云学习笔记3——点云库(PCL)安装与测试教程点云数据代码import numpy as npimport pcl#下面的代码将感兴趣的矩形设置为在原点的两侧,跨度为10米,并在其前面20米处。side_range=(-20, 20) # left-most to right-mostfwd_range=(-20, 20) # back-most to forward-mostprint(side_range)print(fw原创 2021-09-02 18:42:46 · 3179 阅读 · 1 评论 -
立体视觉初探
立体视觉概述原理1.1 单目系统1.2 双目系统1.3 视差和深度计算原理总结代码参考概述立体视觉(Stereo Vision)是计算机视觉技术的一个重要模块。当看到一个物体的时候,人类的视觉系统不仅可以识别出这个物体是什么,而且还能估计出这个物体是离我们比较近还是比较远的。那我们赋予机器人视觉系统时,除了能够识别物体外,同样的要能够判断出障碍物距离有多远。人类时靠双眼来估计距离的,因此一句话总结以下立体视觉:立体视觉是一种计算机视觉技术,其目的是从两幅或两幅以上的图像中推理出图像中每个像素点的深度信息原创 2021-08-24 15:55:00 · 1251 阅读 · 0 评论 -
图像处理中常用的坐标系转换
共有四种坐标系参考:https://blog.csdn.net/weizhangyjs/article/details/81020177https://blog.csdn.net/baidu_38172402/article/details/81949447https://www.cnblogs.com/wangguchangqing/p/8126333.htmlhttps://blog.csdn.net/yangdashi888/article/details/51356385...原创 2021-08-17 17:05:40 · 3807 阅读 · 0 评论 -
点云学习笔记3——点云库(PCL)安装与测试教程
1、https://pointclouds.org/downloads/2、点云库(PCL)安装与测试教程原创 2021-07-30 02:06:06 · 5567 阅读 · 4 评论 -
点云学习笔记2——点云综述
1、点云是什么?2、[论文笔记] 自动驾驶中图像和点云融合:综述3、2021最新关于点云配准的全面综述https://shimo.im/docs/crXxjccccr6ckYHp原创 2021-07-30 02:04:51 · 1610 阅读 · 0 评论 -
自动驾驶汽车车身传感器
自动驾驶汽车车身传感器一、激光雷达三维点云表征概述点云处理的一般流程二、组合惯导三、视觉传感器四、超声波雷达五、毫米波雷达一、激光雷达 精确估计障碍物位置 获取三维信息三维点云表征概述三维点云处理技术二:三维点云表征概述点云处理的一般流程二、组合惯导三、视觉传感器四、超声波雷达五、毫米波雷达...原创 2021-07-29 18:11:15 · 427 阅读 · 0 评论 -
点云学习笔记1——激光雷达的原理
如下图所示,激光雷达的发射器发射出一束激光,激光光束遇到物体后,经过漫反射,返回至激光接收器,雷达模块根据发送和接收信号的时间间隔乘以光速,再除以2,即可计算出发射器与物体的距离。一、激光雷达的分类激光雷达根据安装位置的不同,分类两大类。一类安装在无人车的四周,另一类安装在无人车的车顶。安装在无人车四周的激光雷达,其激光线束一般小于8,常见的有单线激光雷达和四线激光雷达。安装在无人车车顶的激光雷达,其激光线束一般不小于16,常见的有16/32/64线激光雷达。1.1、单线激光雷达单线激光雷达原创 2021-07-29 16:02:24 · 13994 阅读 · 1 评论